Eagmark-Futuristic_Agri-Tech-1200x538.png

The AgTech market is booming, with no signs of slowing down. According to a report by Research And Markets, the global smart agriculture market is estimated to be USD 12.59 billion in 2023 and is expected to reach USD 22.14 billion by 2028, growing at a CAGR of 11.95%. Investment in AgTech will continue to evolve and be used in new ways.

As the world population continues to grow and the challenges facing the agricultural industry persist, it is essential for everyone to work towards the goal of feeding an estimated 9.8 billion people by 2050. Agricultural corporations, governments, and farmers are increasingly adopting technologies to shape the future of food systems. In 2023, it is crucial to keep an eye on the following technology trends in the industry.

1. Controlled Environment Agriculture

Controlled Environment Agriculture (CEA) or indoor farming, is an advanced and intensive form of hydroponically-based agriculture where plants grow within a controlled environment to optimize horticultural practices. Today, CEA facilities mainly produce herbs, lettuces, microgreens, tomatoes, berries, and flowers. In 2023, we expect to see an expansion of the types of products grown in a CEA environment due to ongoing supply chain issues and associated challenges, such as the rising costs of goods and services.

Investors are already targeting farming innovations such as CEA. It is important to note that this innovation would come with potential challenges and additional needs, such as higher upfront equipment costs and training workers on how to use the technology. Operations that invest in new technology will need to upskill their workforce to prepare for the future of work. In doing so, they can better position themselves to be the leaders of their industry.

2. Precision Agriculture

The future of agriculture is exciting, with technology driving the transformation of the industry. One such technology that is gaining popularity is precision agriculture – the use of technology to precisely target farming practices to specific areas, resulting in increased efficiency, lower costs, and reduced environmental impact.

Enroll for the Precision Agriculture Course on the Eagmark Online Learning Campus

Precision agriculture involves using technologies such as sensors, Global Positioning System (GPS) mapping, and drones to gather data about soil health and moisture levels, crops, and weather conditions. This data is then used to optimize farming operations, reduce waste, and increase yields. Precision agriculture enables farmers to make data-driven decisions, leading to improved productivity and profitability.

3. Artificial Intelligence

Artificial Intelligence (AI) is transforming agriculture by enabling farmers to collect, analyze, and interpret vast amounts of data. AI-powered tools can identify crop diseases, pests, and nutrient deficiencies, allowing farmers to take proactive measures to protect their crops. AI can also predict weather patterns, enabling farmers to plan their farming activities and reduce crop losses due to extreme weather conditions.

4. Blockchain

Blockchain technology is becoming increasingly popular in the agriculture industry due to its ability to enhance transparency and traceability. Blockchain allows farmers and other stakeholders in the food supply chain to track the journey of food products from farm to fork. This can help to prevent food fraud, reduce waste, and improve food safety.

You may also want to read: How Blockchain is Decoding the Future of Agriculture

5. Robotics

The use of robotics is also on the rise in agriculture. Robots can be used for tasks such as planting, weeding, and harvesting. This can result in reduced labor costs and increased efficiency and productivity, as robots can work around the clock without the need for breaks. Robots can also reduce the use of herbicides and pesticides, leading to better environmental outcomes.

6. Vertical Farming

Another trend in agriculture is the growth of vertical farming. Vertical farms use a controlled environment to grow crops in vertically stacked layers, often in urban areas. This allows for year-round crop production, higher crop yields, and reduced land use. It also allows for greater control over growing conditions, resulting in less water and fertilizer use and reduced pesticide use.

Vertical farming involves growing crops in vertically stacked layers, using artificial lighting and controlled environments. Vertical farming enables farmers to produce crops in urban areas, reducing the distance food travels from farm to fork. Vertical farming also reduces water usage, energy consumption, and the use of pesticides and herbicides.

In 2023, we believe vertical farms could become more automated. Technology and automation, including artificial intelligence, can help support consistent plant results with predictable yields without the issues that can be caused by human error and the labor costs incurred with traditional farming methods.

7. Climate-Smart Agriculture

Climate change is one of the biggest challenges facing agriculture, and climate-smart agriculture is a response to this challenge. Climate-smart agriculture involves using farming practices that reduce greenhouse gas emissions, increase resilience to climate change, and increase food security. Examples of climate-smart agriculture practices include crop diversification, conservation agriculture, and agroforestry.

8. Biotechnology

Biotechnology is also transforming agriculture. Genetic engineering can be used to produce crops with desirable traits, such as resistance to pests and diseases, or increased tolerance to environmental stress. Biotechnology can also be used to produce crops with improved nutritional value, such as golden rice, which is genetically modified to contain beta-carotene, a precursor to vitamin A.

You may also want to read: The Duality, Promise, and Perils of CRISPR in Feeding the World

Overall, the future of agriculture is bright, with technology driving innovation and transforming the industry. As the world’s population continues to grow, the demand for food will increase, making it essential to continue to develop and adopt new technologies that can increase efficiency, reduce costs, and protect the environment.

9. High-speed 5G networks

The implementation of 5G technology is transforming multiple industries by enhancing decision-making, production processes, and factory operations. Agriculture is among the sectors that are experiencing significant advantages from this advanced technology. The low latency, increased network capacity, and reliable high-speed data transfer of 5G are enabling the rapid and effortless transfer of large amounts of data, such as images, videos, 3D models, weather, and topographical information from connected farms. This is saving time and improving the accuracy of AI/ML modelling. With just one click, data from multiple cameras in a connected farm can be transmitted, a process that used to take days using traditional networks. Ultimately, 5G will accelerate the digitization of agriculture for farmers and businesses.

You may also want to read: Revolutionary Smart Farming And Contribution Of 5G In Its Advancement


Agricultural-Subvention-1200x675.png

Governments often use agricultural subvention as a policy tool to assist farmers in increasing their agricultural productivity. Subsidies can take various forms, such as direct payments, price supports, and tax breaks, to name a few. The primary aim of agricultural subvention is to promote food security, sustainable agriculture, and rural development.

Agricultural subvention has the effect of enhancing agricultural productivity. By reducing production costs, subsidies make it more affordable for farmers to obtain necessary inputs, such as fertilizers, seeds, and farm equipment. Farmers can also invest in advanced technologies that enhance crop yields, reduce waste, and promote food safety.

In addition, agricultural subventions encourage investment in the agricultural sector by incentivizing farmers to expand their operations, resulting in increased production levels and improved supply chain efficiency. This increased production leads to a more stable or even lower price of agricultural products, which benefits consumers by making healthy and affordable food more accessible.

Moreover, agricultural subventions create employment opportunities, especially in rural areas, where farming is a major source of income. Higher agricultural productivity leads to additional labor demand, resulting in job creation and economic growth in rural areas.

According to the World Bank, growth in the agriculture sector is two to four times more effective in raising incomes among the poorest compared to other sectors.

Agricultural subvention is a form of financial assistance given to farmers by the government to help them produce more food. While subventions can help farmers increase their productivity, there are also concerns that they can lead to overproduction and lower prices for farmers.

However, there are potential downsides to agricultural subvention. For instance, it may lead to overproduction, which can cause market surpluses and reduced prices, harming farmers in developing countries who rely on agriculture for their livelihoods. Additionally, agricultural subvention can be expensive for governments, which may find it more beneficial to invest funds in other sectors. Thus, it is crucial to ensure that subsidies are well-targeted and efficiently allocated to encourage agricultural productivity and promote long-term sustainability.

Agricultural subventions can be an effective tool for increasing productivity and reducing poverty among farmers. However, it’s important to ensure that subventions are used in a way that promotes sustainable agriculture practices and doesn’t lead to overproduction or environmental degradation. By providing farmers with the resources they need to produce more food sustainably, we can help ensure that everyone has access to healthy and nutritious food while also protecting our planet.


Women-Livestock-1200x617.png

April 14, 2023 BLOG0

Women have always played a crucial role in agriculture, yet they have been sidelined for centuries, with men dominating the industry. The agricultural industry has traditionally been a male-dominated field, with women having a limited role in it. However, in recent years, there has been a shift in this paradigm. Women have started taking up more significant roles in agriculture, especially in livestock rearing, and this trend is growing.

At Eagmark], we believe in empowering women in agriculture, and we are proud of their increased involvement in livestock rearing. We believe that their contribution will bring significant benefits to the industry as a whole. In this blog post, we will delve into why women’s involvement in livestock rearing is so important, and how it is changing the face of agriculture.

The Importance of Women’s Involvement in Livestock Rearing

Livestock rearing is an integral part of agriculture, and women’s involvement in it is vital for several reasons. Firstly, women bring unique perspectives and skills to the table that can help increase productivity and efficiency. Women have a keen eye for detail, and they are often more attuned to the needs of animals. As a result, they can identify potential problems early on and take steps to prevent them from escalating.

Secondly, women’s involvement in livestock rearing can have a significant impact on the industry’s economic growth. In many developing countries, women are responsible for a significant portion of agricultural production, yet they are often paid less than men for the same work. By empowering women in livestock rearing, we can help close the gender pay gap and promote economic growth in these regions.

Thirdly, women’s involvement in livestock rearing can also lead to a more sustainable and inclusive future for agriculture. Women are more likely to prioritize the well-being of their animals and the environment over short-term gains. By encouraging women to take up leadership roles in livestock rearing, we can create a more sustainable and resilient agricultural system.

The Challenges Women Face in Livestock Rearing

Despite the benefits of women’s involvement in livestock rearing, there are still significant challenges that women face in this field. One of the significant challenges is access to resources and training. Women often lack access to training programs, credit, and other essential resources that can help them become successful in livestock rearing.

Another challenge that women face is gender bias and discrimination. In many cultures, livestock rearing is considered a male-dominated field, and women are not taken seriously. Women often face resistance and discrimination from their male counterparts, making it challenging for them to succeed.

The Way Forward

At Eagmark, we believe that women’s empowerment in agriculture is crucial to achieving sustainable development goals. We offer training programs and support services to help women in livestock rearing achieve their full potential. We are committed to providing women with the tools and resources they need to succeed, and we are proud to be a part of this movement towards greater gender equality in agriculture.

However, there is still a lot of work to be done. We need to work towards breaking down the barriers that prevent women from taking up leadership roles in livestock rearing. We need to provide them with the necessary training and resources to succeed. We also need to change cultural attitudes towards women in agriculture and create a more inclusive and supportive environment for them.

Conclusion

Women’s involvement in livestock rearing is crucial for the growth and sustainability of the agricultural industry. Women bring unique perspectives and skills to the table, and their involvement can lead to a more productive, inclusive, and sustainable agricultural system. However, there are still significant challenges that women face in livestock rearing, and we need to work towards breaking down these barriers.


Eagmark_corn-1200x627.jpg

Malnutrition, particularly a lack in micronutrients, has been linked to anemia, weariness, and in some cases has been implicated in blindness, accounting for 17% of all fatalities in children under the age of five in underdeveloped nations.

While micronutrient deficiency is a type of malnutrition, it has been linked to poor mental development, increased oxidative stress, reduced growth in babies, and inadequate immunity to diseases.

Researchers from the University of Ibadan and IITACGIAR in Nigeria found that a lack of micronutrients in the diet causes “hidden hunger,” necessitating the consumption of foods fortified with sufficient amounts of bioavailable micronutrients.

Due to the substantial reliance on maize-based meals in developing nations and the prevalence of micronutrient deficiencies, maize is an ideal source for biofortification due to its low cost of production and rising use in processed goods in these nations.

The grains of maize are a significant crop that can help ensure global food security and contain no anti-nutrients. They comprise roughly 72% starch, 10% protein, 4.8% fat, 8.5% dietary fiber, and 3.0% sugar. Unfortunately, the majority of maize genotypes have low levels of important elements including iron and zinc as well as vitamin A.

The orange and yellow colors of maize have been associated with higher nutritional value due to the presence of carotenoids, especially zeaxanthin and -carotene which impart the color, according to a study conducted to analyze the genetic components of micronutrients like zinc, iron, and provitamin A (PVA) content in tropical maize (Zea mays L.).

The genetic potential of the crop may be obscured because soil and climatic conditions have a significant impact on how micronutrients accumulate in plants. Nonetheless, substantial heritability estimates for zinc and iron accumulation in maize have been reported, showing the absence of environmental influences on physical expression of these traits and the potential for passing them on to the next generation of seeds.

The carotenoid biosynthesis pathway in maize results in the accumulation of provitamin A, which is then converted to vitamin A in the human body through the actions of certain enzymes after consumption.

At the IITA headquarters in Ibadan, 24 yellow to orange endosperm tropical maize inbred lines were crossed utilizing the North Carolina design II. These lines ranged in zinc and provitamin A content from low to high. Based on similarities in zinc and provitamin A concentrations identified in prior seasons, these inbred lines were grouped into six groups, each containing four inbred lines, to produce six sets of crosses.

The study’s findings indicated that while both additive and non-additive gene effects are significant in the inheritance of zinc content and grain yield, additive gene effects influenced provitamin A and iron content in maize to a greater extent.

Aiming to create synthetics, hybrids, and new inbred lines of maize with high levels of micronutrient enrichment and outstanding agronomic performance, high general combining ability inbred lines with effects on micronutrient content and grain production were also found.

During the study, hybrids with notable particular combining ability effects on PVA, iron, and zinc were also discovered.

A key goal of the SDG 2 is food and nutrition security, and IITA-CGIAR research is strategically focusing on a multifaceted strategy to meet this. This study suggests future investigation into the possibility of utilizing heterosis for provitamin A and mineral nutrients in maize, a significant crop that millions of smallholder farmers in rural Africa rely on for food, nutrition, and financial security.

 



Shoots by Syngenta,” a worldwide platform created to aid in addressing agriculture’s most difficult challenges, fostering innovation, and advancing more sustainable agriculture, has been officially launched by Syngenta Group. The platform will connect scientific discovery and creativity, bringing together academia, research centers, startups, and cross-industry sectors to work with Syngenta’s global network of 5,000+ scientists. It will begin with science-based innovation challenges.

A startup accelerator will also be a part of “Shoots by Syngenta,” offering a supportive environment for early-stage businesses creating breakthrough agricultural technologies. Startup cohorts will enroll in a program that connects them with funding, mentors, and resources to hasten their growth and impact.

With the help of agricultural innovation, 5 billion more people can now be fed on virtually the same amount of land as they were 70 years ago. However, by 2050, 2+ billion more people will be eating 50% more food, necessitating a quicker innovation pathway for useful and scalable technology. These solutions for farmers facing escalating dangers from pests, disease, and harsh weather play an increasingly essential role in innovation through collaboration.

Specific innovation needs from across the Syngenta Crop Protection and Seeds businesses will be highlighted in “Shoots by Syngenta.” Every person with a scientific interest is able to submit proposals in response to the challenges or other areas of attention when the science-based innovation challenges are posted on the website. Quick evaluation of proposals leads to the progression of those that fit both parties into a cooperative partnership to further the study or technology that may later be licensed.

Early-stage businesses will have the chance to test their technology at Syngenta’s Farm of the Future and a few select grower farms around the world. The startup accelerator will also offer mentorship and access to industry experts, as well as a chance to present and test ideas with relevant business executives and investors. Participants will get individualized coaching from Syngenta business leaders that is tailored to meet the needs of each team.


McKinsey-research-1200x420.png

A new report by McKinsey & Company has found that climate change will have a severe impact on smallholder farmers in India, Ethiopia, and Mexico, with up to 80% of such farmers likely to be affected by climate hazards such as drought, flooding, and extreme heat. The report, titled “What climate-smart agriculture means for smallholder farmers”, also highlights that climate change will affect land suitability for crop production, with India alone set to lose 450,000 square kilometers of land currently usable for rain-fed rice cultivation. Despite smallholder farmers producing 32% of the world’s agriculture-related greenhouse gas emissions and being among the most vulnerable to climate change, there is currently no clear roadmap for adopting countermeasures or prioritizing necessary investments to support smallholders in mitigating and adapting to climate change.

The report identifies 33 climate adaptation and mitigation measures for smallholder farmers, ranging from rotational grazing to dry direct-seeding technologies, and calls for governments and the private sector to form clusters of similar smallholder farmers to scale up the adoption of multiple measures. It also suggests investing in climate-resilient infrastructure, forming national agricultural research systems pioneering new technologies, and helping farmers bring sustainable new crops to market. Climate-resilient farming practices will be vital in reducing global inequality and driving inclusive growth, given smallholder farmers’ disproportionate vulnerability to climate risks, and the fact that they produce a third of the world’s food while demand is set to soar 60% by 2050.

Additionally, the report recommends building land management plans around reducing climate hazards, increasing crop insurance, and better food security planning to mitigate climate risks, and using taxes, subsidies, and other incentives to encourage sustainable farming. The report also emphasizes the need for further guidance on which measures to prioritize in each region, as the applicability of measures varies across and within countries due to different farming systems and practices. For instance, fertilizer application rates are five times higher in India than in Ethiopia, making soil- and fertilizer-related mitigation measures a higher priority in India.

According to the report, 75% of smallholder farmers could feasibly adopt at least three of the adaptation measures identified, and the more they implement, the greater their climate resilience will be. The report also notes that smallholder farmers account for a third of CO2 emissions from agriculture and food supplies, and implementing climate-smart agriculture could reduce greenhouse gas emissions while supporting vulnerable populations and improving global food security.

However, smallholder farms are often fragmented and have limited access to inputs, new technologies, and financing, which makes climate adaptation and mitigation challenging. Governments, financiers, development organizations, and private-sector players have a key role to play in supporting the shift to more sustainable practices among smallholder farmers, prioritizing measures, identifying clusters of farmers for implementation of these measures, and piloting business models or incentives to drive adoption. For example, in Africa, some actors are already piloting efforts to connect smallholders to carbon markets or to climate-smart lending, encouraging adoption of these practices.


Wheat-variety-with-longer-roots.jpg

Inset: Photo of roots that contain different dosages of a family of genes that affects root architecture, allowing wheat plants to grow longer roots and take in more water – Gilad Gabay / UC Davis.

The research team from the University of California, Davis has discovered that growing wheat in drought conditions may become easier in the future, thanks to their new genetic research. The team found that by stimulating longer root growth, wheat plants can pull water from deeper supplies. This results in plants with more biomass and higher grain yield, making them more resistant to low water conditions.

The study, published in the journal Nature Communications, provides new tools to modify wheat root architecture to withstand low water conditions. Gilad Gabay, a postdoctoral researcher in the Department of Plant Sciences at UC Davis and the first author on the paper, said that this finding is a useful tool to engineer root systems to improve yield under drought conditions in wheat.

According to the researchers, roots play a crucial role in plants as they absorb water and nutrients to support plant growth. The discovery of a gene family called OPRIII, and that different copies of these genes affect root length, is a significant step in understanding the genes that affect the root structure of wheat.

Distinguished Professor Jorge Dubcovsky, the project leader in the lab where Gabay works, said that the duplication of the OPRIII genes results in increased production of a plant hormone called Jasmonic acid that causes the accelerated production of lateral roots. Different dosages of these genes can be used to obtain different roots.

The researchers used CRISPR gene editing technology to eliminate some of the OPRIII genes duplicated in wheat lines with shorter roots. On the other hand, increasing the copies of these genes caused shorter and more branched roots. But inserting a rye chromosome resulted in decreased OPRIII wheat genes and longer roots.

Fine-tuning the dosage of the OPRIII genes can allow researchers to engineer root systems that are adapted to drought, normal conditions, and different scenarios. By knowing the right combination of genes, researchers can search for wheat varieties that have those natural variations and breed them for release to growers planting in low-water environments.

Losses from water stress can erase the improvements in wheat production. Thus, plants that can adapt to low water conditions while having increased yield will be crucial in growing enough food for a growing population in the face of global warming.

Contributors to the paper include researchers from UC Berkeley, Howard Hughes Medical Institute in Maryland, Fudan University in China, National University of San Martin in Argentina, China Agricultural University, Technological Institute of Chascomús in Argentina, University of Haifa in Israel, and UC Riverside Metabolomics Core Facility.

Funding for the researchers came from the BARD US-Israel Agricultural Research and Development Fund, U.S. Department of Agriculture, Howard Hughes Medical Institute, and National Natural Science Foundation of China.


Future-of-Agriculture_Eagmark-Agri-Hub-1200x675.png

January 16, 2023 BLOG0

As the world becomes increasingly interconnected, the global food industry has undergone significant changes. In many developed countries, improvements in infrastructure, technology, and farm yields have led to a decline in the percentage of the population working in agriculture. However, in many developing countries, the situation is quite different. because of lack of infrastructure and technology which has made it difficult to increase efficiency and reduce the labor needed in food production.

On average, over the last few decades, about 40% of the world’s population was employed in some agricultural-related industry. This includes not just farmers, but also workers in food processing, transportation, and distribution. However, according to data from the World Bank, the percentage of people working in food production has declined steadily over the past 2 decades.

This decline is primarily driven by the development of infrastructure, technology, and improvements in farm yields. As these factors have improved, it has led to the need for fewer people to labor as farm workers. This is especially true in developed countries, where mechanization has replaced much of the manual labor once needed on farms.

Globally, about 1 billion people still work in agriculture, which represents about 27% of the population. This is down from 44% in 1991, indicating a significant shift in the industry.

Despite this decline, food production remains a critical industry that supports the livelihoods of billions of people around the world. And as the global population continues to grow, it will be imperative for countries to find ways to sustainably and efficiently produce enough food to meet the needs of their citizens. This may involve a combination of traditional farming methods and the use of technology and innovation to increase efficiency and reduce the labor needed to grow and process food.

While the decline in employment in the food industry may be due in part to technological advancements and improvements in infrastructure, it’s important to note that this trend is not uniform across all regions. In fact, in many developing countries, the percentage of the population working in agriculture has remained relatively stable or has even increased in recent decades.

This is due, in part, to the fact that these countries often lack the infrastructure and technology that has allowed developed countries to become more efficient in food production. As a result, much of the farming in these countries is still done by hand, and there is a greater need for labor.

Additionally, many developing countries rely heavily on agriculture as a major contributor to their economies. In these countries, improving efficiency in food production can be a key factor in reducing poverty and promoting economic growth.

The Transformative Changes Needed

There are a number of steps that developing countries can take to improve their food production and catch up with the rest of the world. Some of these steps include:

1. Investing in infrastructure: Improving infrastructure, such as roads, ports, and storage facilities, can make it easier for farmers to get their products to market and increase efficiency in the food supply chain.

2. Adopt new technologies: By investing in new technologies, such as irrigation systems, seed varieties, and fertilizers, developing countries can increase their crop yields and improve the efficiency of their food production.

3. Promote research and development: Supporting research and development can help countries identify new ways to improve food production and address challenges such as climate change and pests.

4. Encourage education and training: Providing education and training to farmers can help them learn new skills and adopt best practices that can increase the efficiency and sustainability of their farming operations.

5. Develop supportive policies: Governments can implement policies that support the growth of the agricultural sector, such as providing access to credit, land, and other resources.

6. Foster public-private partnerships: Public-private partnerships can bring together the resources and expertise of the private sector with the goals and needs of the government, helping to accelerate progress and promote sustainable development.

7. Encourage innovation: Encouraging innovation and entrepreneurship can help developing countries identify and pursue new opportunities for improving food production. This could include supporting startups and small businesses that are working on solutions to challenges in the agricultural sector.

8. Promote sustainable agriculture: Adopting sustainable agriculture practices, such as conservation agriculture and integrated pest management, can help developing countries increase their crop yields while also protecting the environment and preserving natural resources.

9. Foster collaboration and knowledge sharing: Collaborating with other countries and sharing knowledge and expertise can help developing countries learn from the experiences of others and identify best practices that can be adapted to their own situations.

While the road ahead may not be easy, it is possible for developing countries to close the gap and join the rest of the world in building a more sustainable and efficient food industry. By working together and embracing new ideas, we can create a brighter future for everyone.


Block_Chain-1200x591.png

January 12, 2023 AGRI TECHBLOG0

Blockchain technology is shaking up the agriculture industry with its revolutionary approach to recording transactions and accounts. Dubbed the “blockchain ledger,” this distributed system is gaining popularity as a tool for promoting transparency and accountability.

Gone are the days of costly data storage. Blockchain technology has the potential to revolutionize the way we store and access information about inventory, farm operations, and the overall status of the agriculture sector.

With blockchain, tracking the source of agricultural products is now a breeze. This means that farmers, customers, and everyone in between can have confidence in the quality of the food supply chain.

But that’s not all. Blockchain’s ability to facilitate data-driven technologies is bringing us closer to the smart farming industry of the future. With its stable and trustworthy data storage capabilities, combined with the power of smart contracts, blockchain is smoothing out the process of transactions between multiple parties and making the entire process faster and more efficient.

Application and uses of Blockchain in Agriculture

Blockchain technology is revolutionizing the agricultural industry by providing new and innovative ways to improve efficiency and transparency. In this article, we’ll take a deep dive into some of the most exciting uses of blockchain in agriculture.

Imagine being able to incorporate cutting-edge technology, like sensors, machine learning, and data analysis tools, into your farming operations. This is the concept of “smart farming,” also known as “smart agriculture.” It’s all about using technology to make farming more precise, efficient, and reliable. But, as with any new technology, there are always challenges to overcome.

Traditionally, the management systems for smart farming have been centralized, which can lead to errors in data collection and increases the risk of cyber-attacks. That’s where blockchain technology comes in. By using blockchain, we can securely store data from seed to sale, and allow all players in the process to generate and access the necessary environmental monitoring data at any point along the way. Blockchain’s decentralization is its greatest strength in smart agriculture, as it simplifies data sharing and reduces the risk of data loss and distortion.

There are many exciting projects and solutions currently being developed to take advantage of the power of blockchain in agriculture.

The future of agriculture is looking brighter than ever before, thanks to blockchain technology. With its ability to increase efficiency, transparency, and security, we can look forward to a smarter and more sustainable agricultural industry.

Unleashing the Power of Blockchain in the Agricultural Food Supply Chain: A Revolution in Traceability and Efficiency

In today’s globalized world, the food supply chain in the agriculture industry has become longer and more complex than ever before. But with this increased complexity comes a host of challenges, from concerns about food security and quality, to issues of traceability, trust, and supply chain inefficiencies. These challenges weigh heavily on the economy and society, and put the health of customers at risk.

Enter blockchain technology, the game-changer that resolves many of these difficulties. With blockchain, trust is established between producers and customers by providing specific product data within the blockchain. This greatly improves transparency in the food supply chain process.

The benefits of blockchain technology are far-reaching for both corporations and farmers. It empowers businesses to raise the value of their goods and increase their market competitiveness. It also makes it nearly impossible for low-quality or fake goods providers to continue their deceitful practices.

Think of it as a digital watchdog that guards the food supply chain and make sure that only high-quality and authentic goods make it to your plate. Blockchain technology is bringing a new level of trust and transparency to the agricultural industry, and it’s an exciting time to be a part of it.

Revolutionizing Agriculture: Unlocking the Potential of Blockchain in Supply Chain Management

The food supply chain has become a tangled web of complexities due to the global nature of our food system and the intense competition in the market. Inefficiencies such as traceability, safety, quality, trust, and supply chain inefficiency, pose a significant risk to society, the economy, and human health. Smart contracts play a crucial role in ensuring a smooth and efficient food supply chain system.

Blockchain technology has the power to alleviate many of these issues by helping manufacturers establish a trusting relationship with customers by providing transparent and accurate information about their products on the blockchain. This not only improves the reputation of the products but also helps to boost the competitiveness of the businesses. It also makes it difficult for fraud and low-quality product providers to survive, ultimately driving all suppliers in the agricultural and food industries to improve their product quality.

From the consumer standpoint, blockchain gives accurate and reliable information about how food is produced and traded, addressing concerns about safety, quality, and environmental sustainability. It enables customers to better understand the food production process and connect with farmers, thus fostering consumer trust and confidence in food safety. For regulatory authorities, blockchain provides transparent and accurate supply chain data that allows them to implement informed and efficient policies and even aid in crop insurance.

While blockchain technology is rapidly evolving, it still has a long way to go in transforming the food supply chain. Its implementation in the food supply chain still faces challenges, such as a lack of widespread engagement and collaboration from all stakeholders, and immature and flawed areas in the deployment process. Furthermore, it is critical to study the motivations of the parties involved to contribute accurate data to the blockchain, particularly for small-scale farming, as the benefits of blockchain may vary depending on the size of the farm.

In conclusion, blockchain technology has the potential to revolutionize the food supply chain by providing transparency, security, and decentralization. It helps in preventing food fraud, reducing supply chain management costs, improving food safety and traceability, enabling smart farming and smart index-based agriculture insurance, and provides new revenue streams. However, its implementation is still in its early stages and further research is needed to understand its full potential and limitations.

Harvesting the Benefits: How Blockchain is Transforming Agricultural Insurance

Climate change has thrown the agricultural industry into a state of uncertainty, with extreme weather events taking a toll on the quality of crops and cattle. To combat this unpredictability, farmers often turn to agricultural insurance schemes as a safety net.

Farmers pay a small insurance fee at the start of each growing cycle, and in return, they are compensated if their farms suffer losses due to unpredictable weather conditions. This gives farmers a sense of security as they navigate the unpredictability of weather patterns and the vagaries of the supply chain.

With various insurance policies to choose from, farmers can pick a policy that suits their needs the best. However, traditional insurance policies often have difficulties relating to damage assessment and lack of insurer information, causing headaches for both farmers and insurance companies.

But what if I tell you there’s a technology that can change all that? Blockchain technology has the potential to transform a variety of industries, and the agricultural industry is no exception. Blockchain can aid the advancement of index-based insurances in a couple of ways.

First, payments could be based on real-time and automatic criteria like weather data. For example, if a certain temperature threshold is reached, it would trigger a payout to the farmer. Smart contracts can specify these terms exactly.

Secondly, with a smart oracle, all data sources, such as weather data and plant growth information, can be automatically used in the insurance scheme, which significantly improves the payment process and index determination.

It’s an exciting time for the agricultural industry as blockchain technology is providing new ways to mitigate risk and uncertainty. It’s a game-changer for farmers and insurance companies alike.

Blockchain-Powered Data Storage

Picture this, with the help of a blockchain developer, buying and selling agricultural products on e-commerce sites becomes a breeze, thanks to the power of blockchain technology. Imagine a world where information protection, food supply chain management, agricultural supply chain data storage, decentralized crop insurance and reduced transaction costs are all a reality.

When it comes to data security, blockchain has your back. It offers the vital feature of private key encryption, which strengthens the validity of the authentication process. This ensures that all data collected throughout the planting and harvesting stages is kept safe and secure.

In terms of supply chain management, blockchain acts like a conductor, orchestrating the flow of information and transactions between all parties, leading to increased efficiency and lower costs. This can also help to improve traceability and transparency, allowing you to know the exact origin of your produce.

And let’s not forget the payment process, which becomes a seamless experience. Blockchain technology enables digital payment solutions with zero transaction costs, and the integration of cryptocurrencies can further reduce the costs, allowing you to save more.

All of these features contribute to increasing customer trust in the e-commerce process of buying agricultural products. This not only benefits farmers by increasing their revenue and reach to a larger audience, but it also empowers customers to make informed decisions about the food they consume.

In short, blockchain technology has the power to revolutionize the agricultural industry by improving data.

Blockchain for Better Bites: Revolutionizing Food Production with this innovative technology

Blockchain technology is a game-changer for the food industry. It offers transparency, security, and decentralization to an industry that desperately needs it. With blockchain, transactions are recorded and stored immutably, meaning that every modification is tracked and exposed to the entire network, making it impossible for transactions to be altered or disguised.

Think of blockchain as a digital ledger that records all the information about the food production process, stored in a distributed fashion across multiple networks that all members can access and read. This creates a transparent environment where trust is no longer necessary and there is no need for a central authority to mediate between parties.

This is especially important when it comes to detecting food tampering, fraud, and deceptive advertising. It also helps with large-scale recalls of hazardous goods, reducing food waste in supply chain networks and preventing food spoilage, and allowing businesses to confirm organic or fair-trade origins.

However, implementing blockchain technology in the food production industry does come with its challenges. Understanding the complexity of the food ecosystem and creating a tailored system that can handle different shapes, sizes, storage systems, handling processes, and data recording methods can be a barrier for newcomers to the field.

Another issue is data transparency, as it can be a double-edged sword. On one hand, it can provide accountability and improve transparency in the agricultural industry, but on the other hand, it can lead to backlash against corporations if something goes wrong. And as we all know, blockchain technology needs to handle large amount of data and properly plan out the structure and scaling of the network.

Blockchain technology has the power to revolutionize the food production industry, making it more transparent, secure and efficient. It may be a bit challenging to implement, but with the right approach, it can bring a whole new level of transparency and trust to the food industry.

Summing It All Up

Blockchain technology is on the rise and showing no signs of slowing down. It has the potential to shake up multiple industries, but the agriculture market is particularly ripe for disruption. With a global value of over 2.4 trillion dollars and over one billion employees, the possibilities for innovation are endless.

Think of blockchain in agriculture as a tool for streamlining and modernizing the entire supply chain process. Smart contracts, big data, crop insurance, and unmanned aerial vehicles are just a few examples of how blockchain can be utilized to track and improve efficiency in the food production process.

Imagine being able to trace the exact origin of your produce, all the way from the farm to the grocery store. Smart contracts can revolutionize the way agricultural supply chains operate by using the data collected through crop insurance schemes to boost overall supply chain management.

In short, if you’re an agricultural supply chain looking to increase efficiency, implementing a private, local blockchain to track and manage your data is the way to go. With live access to information collected throughout the entire food production process, your supply chain will be able to operate with precision and transparency.Top of Form


nuts_bag-1200x800.jpeg

January 10, 2023 BLOGEAGMARK NEWS0

The nutritious benefits of peanuts cannot be underscored enough! Peanuts are a delicious food that can be enjoyed as part of a healthy and varied diet. In addition to their many health benefits, peanuts can also be a sustainable and socially responsible choice, as they can support smallholder farmers and contribute to the sustainability of local communities.

In this blog post, we’ll explore ten reasons why you should consider adding peanuts to your diet. From their role as a good source of plant-based protein and fiber, to their potential benefits for heart health and weight management, peanuts are a versatile and nutritious food that can offer a range of benefits when consumed as part of a healthy diet.

So, if you’re looking to add some crunch and flavor to your meals, or if you’re just looking for a nutritious and tasty snack, it’s time to go nuts for peanuts!

Here are ten reasons why you should consider adding peanuts to your diet:

  1. Peanuts are a good source of plant-based protein: One serving of peanuts (about 28 grams) contains about 7 grams of protein, making them a good source of this important nutrient for vegetarians and vegans.
  2. Peanuts are high in fiber: Peanuts are a good source of both soluble and insoluble fiber, which can help to support digestive health and prevent constipation.
  3. Peanuts are rich in antioxidants: Peanuts are a good source of antioxidants, which can help to protect cells from damage and may have anti-aging effects.
  4. Peanuts may support heart health: Some studies have suggested that peanuts may help to lower cholesterol levels and reduce the risk of heart disease when consumed as part of a healthy diet.
  5. Peanuts are versatile and convenient: Peanuts can be eaten on their own as a snack, added to dishes as a crunchy topping, or used to make peanut butter and other products. They are also portable and easy to pack, making them a convenient snack option.
  6. Peanuts may help with weight management: Peanuts are high in protein and fiber, which can help to keep you feeling full and satisfied. Some studies have also suggested that peanuts may help with weight management when consumed as part of a healthy diet.
  7. Peanuts are a good source of nutrients: In addition to protein and fiber, peanuts are also a good source of several important nutrients, including vitamin E, magnesium, and niacin.
  8. Peanuts may have anti-inflammatory effects: Some research has suggested that peanuts may have anti-inflammatory effects, which may be beneficial for conditions such as arthritis.
  9. Peanuts are a sustainable food option: Peanut farming can be a sustainable and environmentally-friendly option, as peanuts can be grown in rotation with other crops and help to improve soil fertility.
  10. Peanuts are delicious: Last but not least, peanuts are a tasty and satisfying food that can add flavor and crunch to a variety of dishes and snacks

Generally, peanuts are a nutritious and delicious food that can be enjoyed as part of a healthy and varied diet. From their role as a good source of plant-based protein and fiber, to their potential benefits for heart health and weight management, peanuts are a versatile and nutritious food that can offer a range of benefits when consumed as part of a healthy diet.


eagmark-peanut-farmer-1200x923.jpg

January 10, 2023 BLOGEAGMARK NEWS0

Peanuts are a popular snack food that many people enjoy, but did you know that peanuts are actually legumes and not nuts? That’s right – groundnuts are related to beans and lentils and are native to South America.

Peanuts are high in protein and are considered a good source of energy. They also contain numerous vitamins and minerals, including niacin, vitamin E, and magnesium. In fact, peanuts are so nutritious that they are often used in animal feed to provide a high-quality source of protein and other nutrients.

How Important are Groundnuts?

In Africa, peanuts are primarily grown for their edible seeds, which are either consumed directly or used to make products such as peanut butter or oil. Peanuts are also used in a variety of traditional African dishes, such as groundnut stew, which is popular delicacy in some African nations.

In addition to their culinary uses, peanuts also provide numerous economic and social benefits in Africa. Peanut farming is a major source of income for smallholder farmers in many African countries and helps to support local communities. Peanut production also helps to improve soil fertility and can be grown in rotation with other crops, making it a sustainable and environmentally-friendly option.

Did you know that peanut butter was first created in the late 1800s as a food for people who had difficulty chewing?

Today, peanut butter is enjoyed by people of all ages and is a common ingredient in a variety of recipes. Peanuts are also used in other products, such as peanut oil and candy, and they can even be found in some cosmetics.

The peanut butter industry in Africa is a growing sector that plays a significant role in the economy and agriculture of many African countries. Peanut butter is a popular and nutritious food in Africa, and it is often consumed as a spread on bread or used as an ingredient in a variety of dishes.

In Africa, peanuts are primarily grown for their edible seeds, which are either consumed directly or used to make products such as peanut butter or oil. The production of peanut butter in Africa is a labor-intensive process that often involves small-scale farmers and processors, who may lack access to modern equipment and technology. This can make it challenging for the industry to compete with larger, more mechanized producers in other parts of the world.

Despite these challenges, the peanut butter industry in Africa has often provided significant economic and social benefits to the region. Peanut butter production creates jobs and provides income for smallholder farmers and processors, and it also helps to improve food security and nutrition in African communities.

Peanuts are often grown in rotation with other crops, as they can help improve soil quality by adding nitrogen to the soil. This makes them a valuable crop for farmers and helps to ensure the sustainability of agricultural practices.

Unfortunately, peanuts can be a problem for some people, as they are one of the most common food allergies. Many people experience severe reactions to peanuts and peanut products, which can be life-threatening in some cases. It’s important for individuals with peanut allergies to be aware of this and to take necessary precautions when consuming peanuts or products that may contain peanuts.

The peanut industry in Africa faces a number of challenges, including low productivity, limited access to credit and markets, and the impact of climate change. However, there are also opportunities for growth and development within the sector, such as the increasing demand for peanuts and peanut products globally, as well as the potential for value-added processing and exports.

Other Unique Facts About Groundnuts That You Should Know

  1. Peanuts are sometimes called “ground nuts” because they grow underground
  2. Peanuts are a rich source of antioxidants, which are substances that can help protect the body against damage caused by free radicals.
  3. Peanuts have a long shelf life and can be stored in a cool, dry place for several months without spoiling.
  4. Peanut farming plays a vital role in the economies of many developing countries, as peanuts are a major source of income for small farmers.
  5. Peanuts are a popular ingredient in many international cuisines, including Chinese, Thai, and African dishes.
  6. Peanut shells can be used as mulch in gardens, as they help to suppress weeds and retain moisture in the soil.
  7. The peanut plant is a legume, which means it has the ability to fix nitrogen from the air into the soil, helping to enrich the soil and improve its fertility.
  8. Peanuts are a good source of monounsaturated fats, which can help to lower cholesterol levels and reduce the risk of heart disease.

You may also want to read about: Time To “Go Nuts”: 10 Reasons Why You Should Eat Peanuts Quite Often


showcase-daily-life-activities-some-indigenous-people-1200x801.jpg

January 6, 2023 AGRI ECONOMICSBLOG0

The high global food prices in the 21st century is causing concern about the potential for a global nutrition crisis. A study of over 1.27 million children in 44 low and middle-income countries found that exposure to food inflation during pregnancy and early childhood is associated with a higher risk of child wasting in the short term and stunting in the long term.

Poor and landless rural households are particularly at risk for child wasting due to food inflation. These findings emphasize the importance of policies that improve maternal and young child nutrition and address food price volatility and access to nutritious foods.

Food prices have been highly volatile in recent years, with three international price spikes occurring in the past 15 years, including the current COVID-19 pandemic and the invasion of Ukraine. Domestic food inflation in low and middle-income countries remains high, with countries facing economic issues, conflict, or poor governance being particularly affected.

The negative impacts of food price crises on nutrition are particularly concerning given their frequency and increasing intensity in the 21st century. The UN Food and Agriculture Organization’s international food price index reached an all-time high in March 2022, 116% higher than its 2000 value. This is higher than even the peak of the 2007-2008 crisis.

While international prices have recently decreased, domestic food inflation in low and middle-income countries remains high by historical standards, particularly in countries facing economic mismanagement, conflict, or poor governance. It is crucial to address these food price crises and their effects on nutrition, particularly for vulnerable populations such as poor and landless rural households and young children.

Image Source: IPFRI Blog

The impact of Inflation

International food price increases pose a threat to the welfare of the poor, particularly in light of the severe impacts of COVID-19 on poverty and malnutrition. Simulation models from the International Food Policy Research Institute (IFPRI) suggest that increases in food, fuel, and fertilizer prices are linked to short-term increases in poverty, even if rural economies may benefit from higher prices in the long run. However, little is known about the effects of food inflation on child nutrition in the short or long term.

Optimal maternal nutrition during pregnancy and proper child-feeding practices in early life are crucial for promoting development and protecting health and nutrition at all stages of life. Therefore, as food prices rise and households’ access to nutritious foods and healthy diets decreases, it is a major concern that the nutrition of pregnant and lactating women and their young infants, who have high nutrient requirements, may suffer the most.

A study using data from 130 Demographic Health Surveys in 44 low and middle-income countries found that food inflation is associated with higher risks of wasting and severe wasting in children, particularly in infants under 5 months of age, potentially due to a maternal nutrition pathway during pregnancy. Food inflation was also linked to poor dietary diversity in children aged 6-23 months, suggesting an additional postnatal pathway.

For stunting, a measure of long-term or chronic malnutrition, we test the effects of food price changes in the year before measurement. Those predicted risks are shown in Figure 3 for all stunting (in black) and severe stunting (in blue), by child age. Food inflation is again associated with higher risks for stunting and severe stunting, and the effect size is large and robust across ages. Across all children 0-59 months of age, a 5% increase in the real price of food is associated with a 7% higher risk of stunting and a 10% higher risk of severe stunting.

These results demonstrate the negative impacts of food inflation on child nutrition, particularly for wasting in the short term and stunting in the long term. They also highlight the importance of addressing food price volatility and improving access to nutritious foods in order to protect the nutrition of vulnerable populations such as pregnant and lactating women and young children. It is crucial to implement policies focused on improving maternal and young child nutrition, as well as broader actions to reduce food price volatility and increase access to nutritious foods.

Image Source: IPFRI Blog

Which groups are most vulnerable to the negative impacts of food inflation?

Previous research has shown that poor, rural, and landless households are often more vulnerable to inflation shocks, while male infants are more vulnerable to shocks than females according to nutrition-focused studies. The current study also found that male children, rural children, and children from asset-poor and landless households are at higher risk for wasting due to food inflation, particularly for male children and children from asset-poor and landless households. These findings demonstrate the disproportionate impact of food inflation on vulnerable populations and the need for targeted policies to protect their nutrition.

The long-term effects of short-term economic shocks on nutrition

Even brief periods of poor nutrition can have lasting impacts on child growth and development, particularly during the first 1000 days of life when the foundations for optimal nutrition, health, and development are established. The study found that price increases during pregnancy and the first year of life were linked to a higher risk of stunting at age 3-5 years, with stronger effects for severe stunting. These results show the significant and long-lasting consequences of nutritional insults during critical periods of development.

Image Source: IPFRI Blog

Image Source: IPFRI Blog

Policies and programs to protect young children and mothers

IFPRI’S study suggested some implications. The impacts of food inflation on nutrition during the critical period of the first 1000 days of life, including pregnancy and infancy, and the disproportionate impact on poor and landless rural households highlight the urgent need for policies and programs to protect these vulnerable populations.

The IFPRI’s study suggested that Maternal and child food or cash transfers, possibly with health and nutrition-related conditions, can provide protection throughout the first 1000 days and beyond, particularly if they are targeted at the poorest groups and combined with nutrition and health-focused social behavior change communication and adjusted for inflation.

The publication suggested that investing in multi-dimensional early warning systems and programs to prevent and manage severe acute malnutrition is also important in an era of increased food price volatility and extreme weather events. Additionally, food policies should aim to stabilize food prices and increase the affordability of nutritious foods.

The study recommended the following scaling up investments in climate-smart and nutrition-smart agricultural research and development, implementing new approaches to grain reserves, more closely regulating biofuels policies, reforming trade to prevent export restrictions, and adapting and making social protection programs more nutrition-sensitive to protect the incomes and diets of high-risk populations. closely regulating biofuels policies, reforming trade to prevent export restrictions, and adapting and making social protection programs more nutrition-sensitive to protect the incomes and diets of high-risk populations.

Read full article on IFPRI’s Blog


Agriculture-2.0-CRISPR.png

CRISPR, or Clustered Regularly Interspaced Short Palindromic Repeats, is a revolutionary gene-editing tool that has the potential to transform the agriculture industry. This innovative technology allows scientists and researchers to precisely target and alter specific genes within an organism’s DNA, paving the way for the development of crops that are more resistant to pests and diseases, require less water and fertilizers, and have a longer shelf life.

CRISPR works by targeting specific sequences of DNA within an organism’s genome and making precise changes to those sequences. The process begins with the identification of the specific gene or genes that are to be edited. Once the target gene has been identified, a small piece of RNA, known as a guide RNA, is designed to bind to the target gene. The guide RNA is then combined with an enzyme called Cas9, which functions like molecular scissors, to cut the DNA at the specific location targeted by the guide RNA.

Once the DNA has been cut, the cell’s natural repair mechanisms are activated and the DNA is either repaired or replaced with a new sequence of DNA. The new sequence can be one that is naturally found in the organism, or it can be a synthetic sequence that has been designed to introduce a specific change or trait into the organism.

Revolutionizing Agriculture: The Power of CRISPR

In the case of agriculture, CRISPR can be used to modify the genes of crops in order to enhance specific traits, such as pest resistance, drought tolerance, or nutritional content. For example, scientists might use CRISPR to introduce a gene from a pest-resistant plant into a crop species that are prone to pest damage. This could result in a crop that is more resistant to pests and requires fewer pesticides to protect it. Similarly, CRISPR could be used to modify the genes of a crop to make it more drought-tolerant, or to enhance its nutritional content by increasing its levels of certain vitamins or minerals.

CRISPR has the potential to greatly enhance the resilience of crops, making them better able to withstand extreme weather conditions, pests, and diseases. By modifying the genes of crops, scientists can create varieties that are more resistant to drought, flooding, and high temperatures, which can significantly reduce crop losses and improve food security.

For example, CRISPR has been used to develop maize varieties that are more drought-tolerant. Maize is a major food crop that is grown around the world, and drought is a major factor that can reduce crop yields. By introducing genes from drought-tolerant plants into the corn seeds, scientists have been able to create maize varieties that are able to survive prolonged periods of drought. This could have a significant impact on food security in areas that are prone to drought and reduce the risk of crop failure.

In addition to improving drought tolerance, CRISPR can also be used to enhance the resilience of crops to other extreme weather conditions. For example, scientists have used CRISPR to develop rice varieties that are more resistant to flooding. Flooding is a major threat to rice crops, and it can cause significant losses for farmers. By creating rice varieties that are more resistant to flooding, CRISPR has the potential to improve food security and reduce the risk of crop failure in areas that are prone to flooding.

In addition to improving crop resilience, CRISPR can also be used to boost crop yields. Scientists have used CRISPR technology to develop crops that are more resistant to pests and diseases, which can greatly reduce the need for pesticides and herbicides. This not only reduces the environmental impact of agriculture, but it can also reduce the costs of production for farmers.

By modifying the genes of crops, scientists can create varieties that are more resistant to pests and diseases, which can greatly reduce the need for pesticides and herbicides. This not only reduces the environmental impact of agriculture, but it can also reduce production costs for farmers.

For example, CRISPR has been used to create potato varieties that are resistant to the potato blight fungus, which can devastate potato crops and cause significant losses for farmers. By eliminating the need for pesticides and herbicides, CRISPR has the potential to greatly improve the efficiency and profitability of potato production.

In addition to increasing pest and disease resistance, CRISPR can also be used to enhance other factors that influence crop yields. Scientists have used CRISPR to modify the genes of rice to improve its photosynthetic efficiency, which can increase crop yields. Other studies have shown that CRISPR can be used to increase the size and number of seeds produced by crops, which can also boost crop yields.

Another potential application of CRISPR in agriculture is the creation of crops with improved nutritional profiles. By altering the genes of certain crops, it is possible to enhance their levels of vitamins, minerals, and other nutrients that are essential for human health. This could be especially beneficial for populations that are at risk of malnutrition, such as those living in developing countries.

Researchers have used CRISPR to modify the genes of rice to increase its levels of beta-carotene, which is converted into vitamin A in the body. Vitamin A deficiency is a major health problem in many developing countries, and it can cause serious problems, including blindness. By creating rice varieties that are rich in beta-carotene, CRISPR has the potential to improve the nutrition of millions of people around the world.

In addition to increasing the levels of specific nutrients, CRISPR can also be used to create crops with more balanced nutritional profiles. CRISPR technology has been used to modify the genes of wheat to increase its levels of zinc and iron, which are essential nutrients that are often lacking in the diets of people in developing countries. By creating crops that are rich in these nutrients, CRISPR has the potential to improve the nutrition of millions of people around the world.

From Drought-Tolerant Crop Varieties to Longer Shelf Life: The Many Possibilities of CRISPR in Agriculture

The benefits don’t stop at that point. There are many other potential benefits of CRISPR in the agricultural sector. Some of the other potential benefits of CRISPR in agriculture include:

  • Creating crops with a longer shelf life: By modifying the genes of certain crops, it is possible to increase their shelf life and reduce spoilage and waste. This could be especially beneficial for crops that are prone to rapid deterioration, such as fruits and vegetables.
  • Reducing the environmental impact of agriculture: CRISPR can be used to create crops that require less water and fertilizers to grow, which can help to reduce the environmental impact of agriculture. It can also be used to create crops that are more resistant to pests and diseases, reducing the need for pesticides and herbicides.
  • Improving the efficiency of agriculture: CRISPR can be used to create crops that are more efficient at converting sunlight and other resources into biomass, which can increase crop yields and reduce the resources required to produce a given amount of food.
  • Enhancing the flavor and quality of crops: By modifying the genes of certain crops, it is possible to improve their flavor and other sensory qualities, which can make them more appealing to consumers.
  • Developing crops that can grow in challenging environments: CRISPR can be used to create crops that are able to thrive in environments that are traditionally inhospitable to agriculture, such as salty or arid soils. This could open up new areas for agriculture and help to improve food security in regions that are currently unable to support traditional crops.

Controversial Concerns of CRISPR in Agriculture

While the potential benefits of CRISPR in agriculture are significant, there are also concerns about the potential risks and unintended consequences of gene editing. These concerns center around the possibility that CRISPR could have negative impacts on the environment and human health, as well as ethical and social implications.

One of the major concerns about CRISPR in agriculture is the potential for negative impacts on the environment. There are concerns that gene-edited crops could have unintended consequences on non-target species, such as insects and birds. For example, if a gene that is toxic to pests is introduced into a crop, it could also be toxic to other species that feed on the crop, such as birds or butterflies. There are also concerns that gene-edited crops could have unintended impacts on soil health and other aspects of the environment.

Another concern about CRISPR in agriculture is the potential for negative impacts on human health. Some experts have raised concerns about the possibility that gene-edited crops could have unintended consequences on human health, such as the potential for allergenic reactions. There are also concerns about the long-term safety of consuming genetically modified foods, as the effects of consuming such foods over an extended period of time are not yet fully understood.

In addition to these concerns, there are also ethical and social implications of CRISPR in agriculture. Some experts have raised concerns about the potential for gene editing to be used to create crops with traits that are considered desirable by certain groups, while others are left behind. There are also concerns about the potential for gene editing to be used to create crops with traits that are considered “designer,” such as crops with specific flavors or colors, which could lead to further inequality and social divides.

Despite these concerns, the use of CRISPR in agriculture is expected to continue to grow in the coming years. As the technology becomes more refined and widely accepted, it is likely to play a key role in addressing some of the major challenges facing the agriculture industry, including food security, sustainability, and nutrition.

While the potential benefits of CRISPR in agriculture are significant, it is important to carefully consider the potential risks and unintended consequences of this technology. It is essential that the use of CRISPR in agriculture be carefully regulated and monitored to ensure that it is used in a responsible and ethical manner.

To begin with, the use of CRISPR in agriculture can be regulated and monitored to ensure that it is used in a responsible and ethical manner. Some of the ways in which this can be done include:

  • Establishing regulatory frameworks to govern the use of CRISPR in agriculture. These frameworks can include guidelines for the development and use of gene-edited crops, as well as procedures for evaluating the potential risks and benefits of such crops.
  • Seeking pre-market approval for gene-edited crops before they are allowed to be grown and sold. This can help to ensure that gene-edited crops are safe for human consumption and the environment.
  • Conducting independent testing of gene-edited crops to evaluate their safety and effectiveness. This can help to ensure that gene-edited crops are safe for human consumption and the environment.
  • Labeling gene-edited products so that consumers are informed about the presence of gene-edited ingredients in the products they purchase. This can be done through labeling requirements that clearly indicate the presence of gene-edited ingredients in products.
  • Ensuring transparency and openness to public scrutiny when developing and using gene-edited crops which can help to ensure that the risks and benefits of gene-edited crops are fully understood and considered.

The potential applications of CRISPR in agriculture are vast and varied and cannot be understated. This technology has the potential to revolutionize the way we grow our food and address some of the major challenges facing the agriculture industry. However, while the potential benefits of CRISPR in agriculture are significant, it is important to carefully consider the potential risks and unintended consequences of this technology for the benefit of the consumers and to allay public fears. One would argue that it is essential that the use of CRISPR in agriculture be carefully regulated and monitored to ensure that it is used in a responsible and ethical manner.


Cocoa-Farmer.png

January 2, 2023 BLOG2

Cocoa farming is a vital and often overlooked industry that provides the world with one of its most beloved treats: chocolate. Cocoa is primarily grown in countries located within 20 degrees of the equator with the majority of production occurring in West Africa, South America, and Southeast Asia.

Cocoa farming is an important industry in many countries around the world, and it plays a vital role in supporting the economies of cocoa-producing countries. However, it is also facing a range of challenges, including low and volatile cocoa prices, limited access to resources and technology, the impact of deforestation, limited availability of land for cocoa cultivation, and the impact of climate change and pests and diseases.

In the African continent, Cocoa is grown majorly in West Africa, which is the largest cocoa-producing region in the world, accounting for around 70% of global production. The top cocoa-producing countries in West Africa are Côte d’Ivoire, Ghana, and Nigeria. Cocoa farming in West Africa is often characterized by small, family-owned farms and low productivity levels.

South America is the second-largest cocoa-producing region, with countries such as Brazil, Ecuador, and Peru being major producers. Cocoa farming in South America is often more mechanized than in West Africa, with larger farms and higher productivity levels.

In Asia, the crop is mainly grown in the Southeast region, with Indonesia and the Philippines being the main producers. Cocoa farming in Southeast Asia is often characterized by smallholder farmers and low productivity levels. It is also facing a range of challenges, including the impact of deforestation and the limited availability of land for cocoa cultivation.

The Cocoa Crop

Growing cocoa is a labor-intensive process that requires a great deal of care and attention. Cocoa trees can take up to five years to mature and begin producing cocoa pods, which must be harvested by hand. Additionally, cocoa trees are sensitive to their environment and require specific conditions to thrive.

They need to be grown in areas with high humidity, plenty of sunlight, and well-draining soil. They also require regular pruning and fertilization to maintain their health and productivity.

Cocoa pods come in a variety of shapes and sizes, and the quality of the cocoa beans inside can vary greatly. The best cocoa beans are those that are plump and have a deep, rich color. After harvesting, the pods are then cracked open to reveal the cocoa beans, which are fermented and dried before they can be shipped and processed into chocolate. The fermentation process is a crucial step in producing high-quality cocoa beans. It involves placing the cocoa beans in boxes or baskets and allowing them to ferment for several days. This helps to develop the flavor and aroma of the cocoa beans.

Exploring the Complexities and Challenges Faced by Farmers

One of the major challenges facing cocoa farmers is the issue of low and volatile cocoa prices. Cocoa prices are subject to fluctuations due to a variety of factors, including weather conditions, and pest outbreaks. The cocoa market is also influenced by a variety of factors, including political instability, economic conditions, and global demand. This makes it difficult for farmers to plan for the future and invest in their farms.

Cocoa farmers often have to deal with a variety of pests and diseases, with the most destructive pest being the cocoa pod borer, a moth that can devastate entire cocoa plantations. Farmers however tend to use a variety of methods to control pests, including the use of chemical pesticides, biological controls, and cultural practices such as crop rotation.

Another challenge is the limited access to resources and technology for many cocoa farmers. Many cocoa farmers live in remote, rural areas with limited access to education, healthcare, and other essential services. This can make it difficult for them to improve their farming practices and increase their yields.

Climate change is also a major threat to cocoa farming, with rising temperatures and changing rainfall patterns affecting the quality and productivity of cocoa crops. This is a major concern for cocoa farmers and the industry as a whole, and efforts are underway to develop cocoa varieties that are more resistant to these changes.

The expansion of cocoa farming has often led to deforestation and the destruction of natural habitats, causing significant environmental and social impacts. The destruction of natural habitats has been detrimental to the environment due to the loss of biodiversity, the disruption of ecosystem services, and the contribution to climate change. It has also h negative impacts on the social and economic well-being of local communities, which rely on forests for their livelihoods and cultural practices.

Efforts are underway to address the issue of deforestation in the cocoa industry, including through the promotion of sustainable cocoa farming practices and the development of certification programs that require cocoa producers to adhere to certain environmental and social standards. However, much work remains to be done to ensure that cocoa is produced in a way that is environmentally and socially responsible.

Human Rights Issues

Child labor and exploitation in the cocoa industry is a serious and complex issue that has garnered significant attention in recent years. Many children in cocoa-producing countries, particularly in West Africa, are forced to work long hours on cocoa farms under hazardous conditions, often for little or no pay.

Efforts are underway to combat this issue and promote child-labor-free cocoa, including through the implementation of programs that aim to educate farmers and provide them with alternative sources of income. However, addressing this issue is complex and requires the efforts of a range of stakeholders, including governments, cocoa companies, and civil society organizations. It is important for all those involved in the cocoa industry to work together to ensure that children are protected and that cocoa is produced in a sustainable and ethical manner.

In recent years, there has been a growing demand for sustainably grown cocoa, with consumers and chocolate companies looking for cocoa that has been produced in an environmentally and socially responsible manner. This has led to the development of various sustainability certification programs, such as the Rainforest Alliance and Fairtrade International, which aim to improve the lives of cocoa farmers and protect the environment.

A Taste of Success: The Dedication and Determination of Cocoa Farmers

Despite the challenges, cocoa farmers around the world continue to work hard to produce high-quality cocoa for the global market. The cocoa industry also plays a vital role in supporting the economies of cocoa-producing countries, providing employment and income for millions of people.

So, the next time you enjoy a delicious chocolate bar or cup of hot cocoa, take a moment to appreciate the hard work and dedication of cocoa farmers around the world. Without their tireless efforts, we wouldn’t have this beloved treat to enjoy.

 


Food-Loss-and-Food-Waste.png

January 2, 2023 BLOG0

Have you ever thought about how much food goes to waste on a daily basis? The truth is, it’s a staggering amount. According to the United Nations Food and Agriculture Organization (FAO), approximately one-third of the food produced in the world is lost or wasted. That’s enough to feed the nearly 870 million people who suffer from hunger and malnutrition around the globe.

But it’s not just a problem for the hungry and malnourished. Food waste also has significant environmental impacts. When food waste ends up in landfills, it decomposes and releases methane, a potent greenhouse gas that contributes to climate change. In fact, food waste is the third largest contributor to global greenhouse gas emissions, after the burning of fossil fuels and deforestation. Alarming, right?

So, what can we do about it? Enter the food recovery hierarchy. This pyramid ranks the various strategies for managing food waste in order of priority, with the goal of reducing the amount of food waste generated and diverting as much of it as possible from landfills and incinerators.

At the bottom of the pyramid is source reduction. This involves preventing food waste from being generated in the first place. This can be achieved through a variety of strategies, such as improving forecasting and inventory management, reducing portion sizes, and encouraging consumers to take only what they can eat. By preventing food waste from being created in the first place, we can make the biggest impact on reducing the overall amount of food waste generated.

The next level of the hierarchy is feeding hungry people. Excess food can be donated to food banks, soup kitchens, and other organizations that can distribute it to people in need. This helps to alleviate food insecurity and ensures that surplus food is put to good use, rather than going to waste.

The third level of the hierarchy is feeding animals. Excess food can be used to feed livestock, pets, and other animals, which can help reduce the demand for other feed sources. This can be an especially important option in areas where there is a surplus of certain types of food that may not be suitable for human consumption.

The fourth level of the hierarchy is industrial uses. This includes using excess food as a feedstock for industrial processes, such as anaerobic digestion or composting. This can help to recover some of the energy and resources that were invested in the production, processing, and transportation of food.

At the fifth place in the hierarchy is composting which is an important component of the food recovery hierarchy, as it helps to divert food waste from landfills and incinerators and recover some of the valuable nutrients and energy that are contained in the food.

There are several ways to compost food waste, including home composting, community composting, and industrial composting. Home composting involves setting up a compost bin or pile in your backyard or garden and adding food waste, yard trimmings, and other organic materials to it. Over time, these materials will break down and decompose, producing compost that can be used to enrich soil and improve plant growth.

You may also want to read about: Navigating the Challenges of Climate Change in Agriculture: The Role of Biostimulants and Climate Smart Farming

Community composting involves setting up a central composting facility that is accessible to a group of people, such as a neighborhood or an apartment complex. Food waste is collected from these individuals and brought to the facility, where it is processed along with other organic materials to produce compost.

Industrial composting involves using large-scale composting facilities to process food waste and other organic materials. This is often done on a commercial scale, and the resulting compost is typically sold to farmers, landscapers, and other customers.

Composting is an effective way to reduce the amount of food waste that is sent to landfills and incinerators, and it can help to recover some of the valuable nutrients and energy contained in food. It is an important part of the food recovery hierarchy, and it can be implemented at various scales, from the individual home to the industrial level.

At the top of the pyramid are landfills and incineration. These should be the last resort, as they do not provide any environmental or social benefits, and can have negative impacts on air quality and climate change.

By following the food recovery hierarchy, we can significantly reduce the amount of food waste that is generated and ensure that it is managed in the most sustainable and beneficial way possible. So, the next time you’re about to toss that leftover food in the trash, think about how you can follow the food recovery hierarchy and positively impact reducing food waste.

You may also want to read about: Why Smallholder Farmers Always Get The Shorter End Of The Stick



December 17, 2022 VIDEOS0

Have you heard of jackfruit? It’s a tropical fruit that’s native to South and Southeast Asia, and it’s quickly gaining popularity all around the world.

But it’s not just delicious and unique in flavor – jackfruit is also incredibly nutritious. It’s a great source of fiber, vitamins, and minerals, including vitamin C, potassium, and magnesium.

So, what does jackfruit taste like? Some say it has a tropical, fruity flavor similar to a combination of pineapple, mango, and banana. Well, we couldn’t agree more.

It’s often used as a meat alternative in dishes like pulled “pork” sandwiches or vegan curries.

Jackfruit can grow to be quite large – they are known for being one of the largest tree-borne fruits in the world. The fruit can range in size from about 10 to 100 pounds, although it is most commonly found in the range of 20 to 60 pounds.

The size of jackfruit is determined by several factors, including the variety of the tree and the growing conditions. In general, jackfruit trees can reach heights of up to 100 feet and have a spread of around 50 feet.

In addition to the fruit itself, the jackfruit tree is also notable for its large leaves, which can grow up to 3 feet long and 2 feet wide.

But jackfruit isn’t just for vegans and vegetarians – it’s a tasty and healthy option for anyone looking to mix up their meals.

So next time you’re at the grocery store, don’t be afraid to give jackfruit a try! Trust us, you won’t be disappointed.



December 15, 2022 BLOGVIDEOS0

Potatoes are one of the most versatile and widely consumed crops in the world. From French fries to potato chips to mashed potatoes, these starchy tubers are a staple in many diets. But did you know that the potato has a rich history and plays a crucial role in global agriculture?

Potatoes originated in the Andean region of South America and were first cultivated by the indigenous people of the area. The Incas considered potatoes to be a sacred food and even used them as a form of currency. In the 16th century, Spanish conquistadors introduced potatoes to Europe where they quickly became a popular crop due to their ability to grow in a wide range of climates and soil conditions.

Today, potatoes are grown in over 100 countries and are the fourth most important food crop in the world. In the United States, potatoes are the number one vegetable crop with over 1.1 million acres dedicated to their production. The majority of these potatoes are used to make processed foods such as chips and fries, but they are also used for animal feed and as a source of starch for industrial purposes.

One of the key factors that makes potatoes such a successful crop is their ability to adapt to different growing conditions. Potatoes can be grown in a variety of climates and soil types, from cold and wet regions to hot and dry ones. This allows farmers to grow potatoes in areas that are not suitable for other crops, making them an important food source in many parts of the world.

Another advantage of potatoes is their high yield potential. A single potato plant can produce multiple potatoes, making them a very efficient crop in terms of land use. Potatoes also require fewer inputs such as fertilizers and pesticides compared to other crops, which makes them more sustainable and environmentally friendly.

Despite their many benefits, potatoes also face challenges. One of the biggest threats to potato production is the emergence of pests and diseases. Potatoes are susceptible to a variety of pests and diseases, such as the Colorado potato beetle and potato blight, which can cause significant damage to crops. To combat these threats, farmers rely on a combination of cultural practices, such as crop rotation, and chemical treatments.

In conclusion, potatoes are an essential food crop that has played a crucial role in global agriculture. Their versatility, adaptability, and high yield potential make them a valuable food source for many people around the world. Despite the challenges they face, potatoes continue to be a staple in diets and will continue to be an important part of the global agricultural landscape.


Data-for-Agri-Development-1-1200x697.png

December 10, 2022 BLOGRESEARCH0

Data has become increasingly important in the field of agriculture, as it can help farmers make more informed decisions about how to manage their crops and livestock. By collecting and analyzing data on factors such as weather, soil conditions, and pest populations, farmers can make more precise predictions about how their crops will grow, and take steps to optimize their yield.

One of the key ways that data is used in agriculture is through the use of precision farming techniques. These techniques involve the use of sensors and other technologies to collect data on a variety of factors that can affect crop growth, such as soil moisture levels, temperature, and sunlight exposure. This data is then used to create detailed maps of individual fields, which can help farmers identify areas that may need extra attention or resources.

For example, a farmer might use data to determine that a certain part of their field is particularly dry, and use that information to adjust their irrigation schedule accordingly. By doing so, they can help ensure that their crops receive the right amount of water at the right times, which can improve their overall health and yield.

In addition to helping farmers manage their crops more effectively, data can also be used to monitor livestock health and optimize feeding and breeding practices. For example, farmers might use data on an animal’s weight and feeding habits to determine the most efficient feeding schedule or use data on an animal’s genetic makeup to make more informed breeding decisions.

The need for farm-level analysis is reinforced by recent policy shifts in the agricultural sector. Many nations have shifted away from market intervention and general payments to farmers in favor of more effective measures that directly target specific objectives like low-income support, eco-services, and adopting technologies and practices that increase productivity, sustainability, and resilience.

Overall, the use of data in agriculture has the potential to greatly improve the efficiency and productivity of farming operations. By providing farmers with more precise information about their crops and animals, data can help them make better decisions and ultimately produce more food for an increasingly growing population.

Data opportunities in agriculture

In rural areas of the developing world, smallholder farmers are the largest employment sector and the most significant contributors to global food production. Family farms account for more than 90% of all farms worldwide; They manage 75% of the farmland and produce 80% of the food.

However, the development of worldwide food creation versus utilization and advancement of world demography shows that there are serious areas of strength for expanding yield. FAO highlights the following facts about the global situation regarding food security and nutrition:

  • Since 2015, there has been no reduction in the prevalence of hunger and malnutrition worldwide, which continues to affect nearly 11% of the population. This indicates that the total number of people experiencing hunger is rising.
  • Over 2 billion individuals “do not have regular access to safe, nutritious, and sufficient food” in 2019.

Climate change is also having a significant impact on yields at the same time. Reports from various international research organizations show that rainfed maize yields in some parts of Africa could fall by as much as 25% by 2050 compared to levels in 2000. Working toward increasing yields is one of the most promising opportunities to address this multifaceted challenge.

Increasing farmers’ access to a wider range of services, such as trade services, financial services, and extension services, could close these gaps. Since it is anticipated that 85% of farmers’ households will have a mobile phone by 2025, these services can now be provided on a large scale through ICT. The combination of three services – access to finance, advisory services, and market linkages – can result in a 57% increase in farmers’ income and a 168% increase in yield as an illustration of this opportunity.

The most promising method for providing services on a large scale is through the use of ICT technologies; however, the content of these services and their capacity to provide accurate, actionable information or results depend on their capacity to aggregate various data sources.

The mash-up of global data such as satellite images, research studies, databases containing information about crops, seeds, pests, and diseases, etc. is where the majority of stakeholders find the design of the service at the farmer’s level (documentation of field ownership, credit records, etc.) and information based in the field (such as information about the soil, location, state of the fields, crops, etc.) to figure out the content (such as the right information to use when making a decision). Both the availability of new products to support farmers’ production (credit, insurance, etc.) are outcomes at the farmer level and the accessibility of current data to aid in decision-making.

Identifying important datasets related to farming crop cycles

Numerous datasets could be utilized to provide farmers with information and services. Some datasets may be useful at various points in the crop cycle, depending on the requirements. Market prices are an illustration of this. If market prices have a time series that shows how prices have changed recently over the past few years, they can be used to choose the crop to grow. Market prices are also useful during the selling stage, but for this dataset to be useful, the information must be nearly real-time. Obviously, some datasets are only available at the country level; however, other datasets, such as weather data or satellite images, may be available locally, regionally, or globally.

Data analytics, artificial intelligence (AI), and machine learning (ML)

The generation of a substantial amount of data is made possible by the mashup of global datasets and farm-level data. The majority of services that have been made available to date have been fairly basic, involving the use of ICT to provide the service and human analysis of the data pertaining to a specific use case.

Future opportunities are provided by new methods, particularly Big Data, blockchain, data science, artificial intelligence, and machine learning. This includes predictive analysis like yield forecasts that will inform all actors in the value chain, from public authorities to traders, providing early warning of potential food security risks.

Increased data availability will make these future strategies feasible. The volume of data will grow exponentially, providing more opportunities for more advanced predictive automatic services, as farm-level data become more readily available, automatic data collection through, for example, sensors begin to spread at scale, and governments, international organizations, all actors, including the private sector, release more open datasets and increase access to big data streams. These services have a greater impact and are more long-lasting because they offer more added value at lower prices than the previous generation of ICT services. With the availability and growth of data science capabilities in almost every nation on the planet, the trend is evident and is likely to result in a new wave of services in the coming years.

The Potential of Big Data and IoT in Agriculture for Africa

The potential of big data and the internet of things (IoT) in agriculture is immense, particularly for the African continent. By harnessing the power of these technologies, African farmers can improve the efficiency and productivity of their operations, while also gaining access to valuable data and insights that can help them make better-informed decisions.

Big data refers to the vast amounts of data generated by various sources, including sensors, devices, and machines. This data can provide valuable information about various aspects of agriculture, including crop yields, soil health, weather conditions, and pest infestations. By analyzing this data, farmers can gain a better understanding of their operations and make more informed decisions about how to optimize their crops and maximize their yields.

The IoT, on the other hand, refers to the network of interconnected devices and sensors that can collect and transmit data in real-time. This technology can be used in agriculture to monitor and control various aspects of the farming process, such as irrigation systems, soil moisture levels, and crop health. By using the IoT, farmers can automate many of the tasks involved in agriculture and reduce the need for manual labor, which can be time-consuming and labor-intensive.

One of the key benefits of big data and the IoT in agriculture is their ability to help farmers make more accurate predictions about the future. By analyzing historical data and trends, farmers can make more informed decisions about when to plant and harvest their crops, as well as how to allocate their resources to maximize their yields. This can help farmers avoid potential losses due to unforeseen events, such as drought or pests, and ensure that their operations remain profitable.

Additionally, big data and the IoT can help farmers gain access to valuable market insights and information about the demand for their products. By using data analytics tools, farmers can track trends in the agricultural market and adjust their operations accordingly to ensure that they are producing crops that are in high demand. This can help farmers increase their revenues and improve the sustainability of their operations.

In conclusion, the potential of big data and the IoT in agriculture is vast, particularly for the African continent. By leveraging these technologies, African farmers can improve the efficiency and productivity of their operations, while also gaining access to valuable data and insights that can help them make better-informed decisions. This can ultimately help to drive economic growth and development in Africa, while also improving the livelihoods of farmers across the continent.

The future of big data and IoT in agriculture for Africa

The future of big data and IoT in agriculture for Africa is an exciting prospect that has the potential to revolutionize the industry and help alleviate food insecurity on the continent.

One of the key challenges facing agriculture in Africa is the lack of access to accurate and timely data. This can make it difficult for farmers to make informed decisions about their crops and livestock, leading to lower productivity and profitability.

However, the advent of big data and IoT technologies has the potential to change this. By using sensors, drones, and other IoT devices, farmers can collect and analyze real-time data on factors such as soil moisture, temperature, and plant health. This data can then be used to optimize irrigation, fertilization, and pest control, leading to more efficient and sustainable farming practices.

In addition, big data and IoT technologies can help improve supply chain management and reduce food waste. By tracking the movement of crops and livestock from the farm to the market, farmers and supply chain managers can better forecast demand and adjust production accordingly. This can help reduce food spoilage and waste, which is a major issue in many parts of Africa.

Furthermore, big data and IoT technologies can also help connect farmers with other stakeholders in the agricultural ecosystem, such as buyers, processors, and distributors. This can help create new market opportunities for farmers and improve access to finance and other resources.

Overall, the future of big data and IoT in agriculture for Africa is full of potential. By leveraging these technologies, farmers can improve their productivity and profitability, and help address the challenges of food insecurity and environmental sustainability on the continent.


1-1200x609.png

December 7, 2022 BLOG0

Feeding an expanding global population while simultaneously minimizing environmental impact and safeguarding natural resources for future generations is a major challenge for the agricultural industry.

The environment can be significantly impacted by agriculture. Agriculture can also have a positive impact on the environment, such as by trapping greenhouse gases within crops and soils or by mitigating flood risks through the adoption of specific farming practices. While these negative effects are serious and can include pollution and degradation of soil, water, and air, agriculture can also have a positive impact on the environment.

It is important to keep an eye on the connections that exist between agriculture and the environment, identify successful agricultural policies that enhance positive environmental impacts while reducing negative ones, and offer suggestions for enhancing policy coherence for the agricultural sector’s environmental performance.

Although the environmental impact of agriculture has improved, there is still much work to be done.

There have been some encouraging signs in recent years that the agriculture sector of African countries is capable of meeting its environmental challenges. However, there is still much work to be done. Agriculture’s impact on the environment has improved. In particular, farmers in numerous African nations have improved their utilization and management of nutrients, pesticides, energy, and water, resulting in lower input consumption per unit of land. Conservation tillage, improved manure storage, and soil nutrient testing are all examples of environmentally friendly farming practices that farmers have made significant progress adopting.

Despite these enhancements, there is something else to do, with a significant job for policymakers. In a number of African nations, nitrogen balances are declining, agricultural farmland is rapidly reducing, and the sector’s contribution to water use and contamination remains high in comparison to other uses. Farmers, policymakers, and the agro-food value chain players need to work together more to solve these enduring problems.

Additionally, raising the environmental and resource productivity of agriculture, improving land management practices, reducing pollution discharges, limiting damage to biodiversity, and strengthening policies that avoid the use of production and input subsidies, which tend to damage the environment, are all necessary to address the twin policy challenge of improving environmental performance while simultaneously ensuring global food security for a growing population.

Future policy decisions can be aided by monitoring and evaluating agriculture’s environmental performance.

Different private and public entities have developed recommendations on how to develop cost-effective agri-environmental policies, how to manage water issues for agriculture, and how to deal with climate change challenges in order to assist farmers in improving the sustainability of agriculture. There are also insights on the potential environmental impact of agriculture policies which have been developed by identifying possible policy misalignments and how to jointly address goals for productivity growth and sustainability.

Since agro-ecological conditions and public preferences vary from country to country, there is unlikely to be a “one-size-fits-all” solution for addressing environmental issues in agriculture. However, policymakers must have a thorough understanding of the links between policies and outcomes and the ability to measure them in order to evaluate and achieve better environmental outcomes at a lower cost.

To help this work and assist farmers with evaluating whether the arrangements they have set up are probably going to support efficiency and limit environmental harm, Eagmark is attempting to foster the development of agri-ecological markers (AEMs). In particular, the AEM database can be utilized for:

  1. Providing a snapshot of the agricultural environment’s current state and trends, which may necessitate policy responses;
  2. Elucidating the regions in which new environmental issues are emerging;
  3. Comparing performance trends over time, and helping farmers meet environmental targets, threshold levels, and standards where they have been set by the government.
  4. Evaluating and monitoring agricultural policies
  5. Anticipating future patterns.

Africas-Widening-Agricultural-Generation-Gap-1200x675.png

December 5, 2022 AGRI ECONOMICSBLOG0

The majority of people in sub-Saharan Africa reside in rural areas, which are also the areas with the lowest levels of human development. Growing agriculture has the dual benefits of reducing poverty in such areas and improving access to food and nutrition security because most rural households are agricultural in nature and the sector makes a significant contribution to the overall economy.

Given that agriculture is responsible for up to almost 70% of domestic employment and 75% of domestic trade on the continent, it makes sense to focus all support on the industry. Because agriculture was a vital sector for socioeconomic growth during Asia’s Green Revolution, widespread rural poverty in Africa offers a chance to do the same and build on that success.

The Bottlenecks

Despite the numerous opportunities for rural livelihood offered by agriculture, many young people, regrettably, find it unappealing and view it as the employment of last resort. This is due to two primary factors. First, many young people think agriculture is not glamorous, lucrative, or has “snub appeal.”

Second, due to a lack of appropriate facilities, institutions, and policies that support agriculture in rural areas, such as financial options and markets. As a result, rural-to-urban migration has increased, poverty has increased, and agriculture has remained undesirable and unattractive to youth. This scenario puts food security at risk and could collapse rural economies that rely mostly on agriculture. As a result, farmers are getting older on average and younger people are less likely to take over for older farmers, creating a “generation gap” in food production.

Because of their negative perception of agriculture, many young people prefer to move to cities and towns in search of white-collar jobs. This is the reason for the generation gap in agriculture. This makes a test for the mechanical headway of farming as more seasoned ages are less acquainted with new developments.

Prospects

Despite these challenges, there is a chance to make agriculture more appealing to the younger generation. Younger generations were born and raised in a technological era where they are surrounded by technologies like smartphones, software programs, and other devices that are used everywhere in the world. Africa presents an expansion opportunity because it has the most uncultivated land in the world. Through mechanization, market access resulting from regional integration, business opportunities, roads, and general rural development, agriculture can be made sustainable in light of a growing population, technological advancements like ICT, and the development of infrastructure.

Recommendation for the future

Making better use of agricultural technologies will make it easier for the next generation to manage agriculture. It will not only inspire the new generation to become involved in agriculture, but it will also assist them in becoming farmers. Furthermore, there is the need to change farming unrefined components into modern items and this will rely progressively upon the limit of African business visionaries to partake and contend in worldwide, provincial, and neighborhood esteem chains.

In order to accomplish this, it will be necessary to support agricultural start-ups with assistance from entrepreneurship development platforms. This will address the market and financial constraints that prevent young people from participating in the agriculture value chain. One methodology toward this path would incorporate business brooding administrations which will uphold youthful agribusiness business visionaries through the arrangement of direction in regions, for example, business arranging, giving research and development framework offices, model turn of events and testing, item approval, business advancement, and working with monetary help through obligation and value. This is in line with the United Nations’ statement that “Africa needs to embrace economic diversification, but also needs to focus on agribusiness to lift the continent out of poverty and put it on the path to prosperity.”

At the policy level, the role of youth in the agricultural development agenda on the continent needs to be emphasized once more. This will serve as the foundation for thinking about how to incorporate gender equality into the agricultural development processes on the continent to get policymakers to be more committed.

Despite organizations like Eagmark’s efforts to correct the imbalance, it is necessary to identify the key success factors and devise strategies for scaling them. Eagmark is actively pursuing means of aligning its implementation by consolidating and forging new programs on youth empowerment in light of the recent rollout of the Science Agenda for Africa Agriculture (S3A), which outlines the guiding principles to help Africa take charge of Science, Technology, and Innovation (STI) to transform its agriculture.


Regenerative-Ag-1200x600.jpeg

October 15, 2022 BLOG0

With the growing global demand for food and nutritional needs, agriculture is fast adopting to the situation in most parts of the world and is entering a transformative era. Although the green revolution has been successful in feeding a rapidly growing human population in the past decades, it has also contributed to depletion of the Earth’s soil and its biodiversity, and has contributed to climate change. The intensive practices are no longer sustainable. The world must move swiftly to transform agriculture through regenerative agricultural practices.

Regenerative agriculture is a food production system that nurtures and restores biodiversity by enhancing soil health, protecting climate and water resources, and improves farms’ productivity and profitability. It combines sustainable agricultural innovations with conventional farming systems focusing on reducing the use of water and other inputs, preventing land degradation and deforestation.

Objective of regenerative agriculture

Most regenerative agricultural practices such as inter-cropping, agroforestry, and integrated livestock farming are mostly associated with indigenous farmers who work with the land rather than against it. These regenerative farming practices mainly focus on producing enough nutritious food for the world’s population, helping with climate change mitigation by sequestering carbon in soil and reducing greenhouse gas emissions, restoration of endangered biodiversity and improving natural habitats, reducing deforestation., and enhancing farmer livelihoods.

1. Least soil disturbance

This principle involves the employing farming practices that minimize soil disturbance which have added benefits to the soil and the climate. The practice involves zero-till or use of reduced-tilling techniques to reduce its vulnerability to wind and water erosion, as well as degeneration of microbiome. Practicing minimum tillage enhances the soil’s ability to retain water, and improves crops performance and resilience during perennial droughts. Regenerative farming in this case involves planting seeds directly into the residue of the previous crop which contains more organic matter making it is less prone to erosion by wind or rainwater.

2. All Year-Round Farming

The practice involves growing of cover crops which provide all year-round plant coverage that prevents soil erosion and increases carbon inputs. Different crops are planted immediately after harvest, often alternating cash crops with cover crops protecting the top soil and increasing its moisture content through root penetration.

3. Diversifying crops in time and space

Practices such as crop rotation and inter-cropping, and agroforestry increases resilience, productivity, and diversity. Planting the same type of crops on the same field routinely degenerates the soil nutrients and encourages pests and weeds infestation. Regenerative agricultural practices such as rotating between nitrogen-fixing crops such as legumes and crops that highly use nitrogen like maize can greatly improve soil fertility.

4. Precision Farming

The application of inputs through data-enabled innovations based on observation, measurement and responding to inter and intra-field variability in crops leads to minimum and optimal amounts of production inputs. Precision agriculture involves use of digital tools such as soil sensors to map out a detailed understanding of soil nutrient content and tailor application of fertilizers and other crop protection products.

5. Mixed Farming

Practicing mixed farming whereby livestock and crops are grown on the same farm can have tremendous improvement on soil health, fertility and structure. The integration of livestock into crop production while using practices such as managed grazing can transform plant material into rich organic matter through manure production which can help prepare the land for the next planting season.

Benefits of Regenerative Agriculture

Regenerative agriculture when widely adopted and practiced has a wide of long-term benefits including:

  • Increased yield & reduced deforestation.
  • Improved biodiversity.
  • Mitigated impact of extreme weather/climate.
  • Enhanced farm profitability.
  • Better nutrition and human health.
  • Enhanced nutrient management, water retention, and less greenhouse gas emissions.
  • Higher yields and increased food security.

What can be done to accelerate adoption and transition to Regenerative Agriculture?

The global population is estimated to reach 9.7 billion by mid-century while at the same time agriculture is currently facing increasing challenges from pests, diseases, effects of climate change and global warming, degraded land, vagaries of weather, among others. While modern farming has tried to feed the current global population of about 7.9 billion, there is still food insecurity and hunger that has plagued most parts of the developing world.

Food security is now a top priority in order to ensure the survival of the human race and to achieve these gains in the shortest time, more investment is needed to accelerate the widespread adoption of regenerative agricultural practices, something that will require heavy involvement of farmers, policymakers, and multinational agricultural companies.


Correcting-the-course-1200x962.png

The 1st and 2nd Sustainable Development Goals (SDG) are to end poverty and hunger by 2030. However, those goals now seem “out of reach,” according to a new World Bank Report that has revealed that the developments to fighting poverty has ground to a halt based on the slow global economic growth.

The slow global economic growth is majorly attributed to COVID-19 which dealt the biggest setback to ending global poverty in recent times and probably in the decades to come. Other contributions to this setback are the global economic shocks that have resulted due to rising food and energy prices as consequences of the climate shocks and conflict between Russia and Ukraine who are among the world’s biggest food producers.

This 2022 report is the first to be released by World Bank since it unveiled the new international poverty index from $1.90 to $2.15. With this, it is estimated that about 600 million individuals will be living below the poverty line and will face extreme poverty by 2030. This is a grim statistic since it is more than twice the number set out in the Sustainable Development Goals.

The projected rise in extreme poverty could lead to unprecedented global hunger, instability, less climate-resilient initiatives, and definitely low food production that will spur less and unsustainable economic growth.

The progress to reduce global poverty levels have staggered since 2014 resulting to even greater challenges in reaching out to populations in low-income economies. The 2022 World Bank Report further analyzes how fiscal policy was used in the first year of the COVID-19 pandemic to support the most vulnerable populations. It also elaborates how taxes, transfers, and subsidies impacted poverty and inequality levels in 94 countries before the pandemic in 2020, revealing and comparing insights of the effects of fiscal policy in normal conditions and during crises.


Soil_microbiome-1200x800.jpg

October 4, 2022 AGRO BIOLOGICALBLOG0

Video Credit: Morehead Planetarium & Science Center

The Competing Needs

In recent times, agricultural productivity has significantly declined due to a number of factors such as environmental degradation, negative effects of climate change and global warming, reduced size of arable land due to the growing population, competing demands for natural resources, soil degradation as a result of harmful human activities, among other factors. Soil is a critical mass that supports all life on earth and without it life on earth will not be feasible.

The Magic of Soil Microorganisms

Soil microbiome play a significant role in creating soil ecological balance and improving plant nutrition and the plants are part of a vibrant ecosystem that comprises numerous and different microbes that thrive in the soil. These microorganisms, including fungi and nitrogen-fixing symbiotic bacteria have been critical in contributing to crop health and yield by improving mineral nutrition to the crops. With the modern day advancements in research and innovations, it has now been discovered that these organisms also have other uses and can play a significant role in replacing synthetic agricultural inputs.

With utmost considering of the challenges that the agricultural sector is facing, advancing research into soil microbiomes could be one of the fundamental solutions that would create a significant impact in increasing agricultural productivity and sustainability in order to feed the growing world population that is expected to reach nearly 10 billion by 2050. Coupled with the global climate crisis, the increasing population has spurred the demand for biofuels which must be produces in adequate quantities without reducing food production.

As it is now, the amount of arable land has reduced due to the soaring population and demand for natural resources. To compound the challenges, the available arable soils have been polluted with harmful chemicals, exhausted with over-cultivation and degraded through erosion. Continued use of fertilizers have also not had shown a great change in improving soil health since a considerable amount of these fertilizer nutrients have been shown to be poorly absorbed by crops. Therefore, advancing research for better understanding of soil microbes remains as part of the core initiatives to effectively improve soil health and efficiently increasing agricultural production minimal disturbance and harm to the ecosystem.

Race Against Time

Time is critical and the race to achieving a sustainable farming is highly dependent on how soon the foundation for deeper soil research will be laid to determine how soil microbiome affect the absorption and uptake of plant nutrients.



The dirt under our feet is usually not given much attention and many still cannot fully understand its real potential, value, and its priceless foundation for all life on Earth. Fertile soils are a source of nutrients for crops and all plant life that are critical in providing feed for animals and food to the entire global population.

Technological innovations such as Biome Makers’ BeCrop technology are used globally to deliver insights into soil biology and sets the standard for soil health. Syngenta’s Research and Development program dubbed the LIVINGRO program will use BeCrop technology to make science-driven decisions that will sustain the production of food that is safe and healthy while conserving and improving biodiversity and soil quality in agricultural ecosystems.

The LIVINGRO program provides a platform that extensively assesses biodiversity and soil health parameters in farming ecosystems. The platform promotes scientific research in the most effective and renewing farming practices to help cultivators and growers improve farm biodiversity and protecting soils for future generations. The program works collaboratively with globally recognized biodiversity, ecology, soil science, and agronomy specialists.

In modern times, it is now possible to sequence the DNA of the soil microbiomes and produce huge amounts of data by using next generation sequencing (NGS) that provides the ability to understand complex datasets and provide the important insights. The Biome Makers’ BeCrop technology interprets the data and produces usable soil health metrics. This data provides informative details that enables farmers to produce more sustainably while fortifying soil functionality and improving soil health.

The joint efforts by the two organizations will further advance soil health management and sustainable farming practices which will ensure quality soil and increased food production for future generations.


5G-Farming-main.jpeg

Video credit: John Deere

From unmanned tractors to robots, drones, gadgets and AI/ML and big data, the agricultural industry is being transformed with the advent of digital revolution and 5G has everything to do with it.

With the current state of global food security and extreme hunger, agricultural sustainability is more critical now than ever and smart farming definitely plays a vital role in food crop production. The amalgamation of 5G, artificial intelligence (AI), machine learning (ML), big data and edge computing provides a powerful element which could forever change smart farming which can lead to agricultural transformation and increased food production.

Agriculture forms the backbone human survival, and yet currently the world is still at the crossroads with increasing food production to meet the global demand given the soaring population that is estimated to reach about 9.7 billion by the mid of the 21st century. With the current technological advancements witnessed globally, it’s dumbfounding that more than two decades into the 21st century farming in most parts of the world still remains largely labor-intensive. Thanks to the penetration of 5G in most parts of the world, farming as it is traditionally known is changing through the automation of the traditional manual labor, marking the advent of modern farming.

Resource Constraints & Challenges in Agriculture

A number of factors have continued to stifle advancement in agriculture to meet the food production needs of the 21st century. The cost of farming and production has been increasing due the high input prices, and increasing cost of other factors of production including labor. The demand for food and other agricultural products is rising while natural resources continue to diminish, and the effects of climate change continue to pummel.  Greenhouse gas emissions are leading to the rise in global temperatures, precipitation patterns are changing, and the infestation of pests, diseases and weeds have continued to reduce crop yields.

The Advent of Smart Farming & Agri-Tech

5G is the next generation of communication systems and is poised to transform agriculture as we know it. Telecommunication carriers are currently on the digital race to rollout high-speed data, 5G-compatible devices and gadgets in their portfolios and within no time 5G will part of our daily lives.

The role of 5G in agriculture cannot be underscored enough as it will increasingly automate the industry which will lead to production of more autonomous agricultural machinery and development of data-driven smart agricultural systems. Conglomerates are now racing against time to develop smart farming systems that can benefit from 5G, AI/ML and edge computing systems. The integration of 5G with other technologies will lead to further advancement of precision farming using customized, data-driven approaches to farm management to replace the traditional cumbersome approaches which lacked the ability to predict future changes in weather and climate patterns, soil nutrient changes and real-time relaying and sharing of data.

The Value of Agri-Tech & Smart Farming

Agri-Tech and Smart Farming play a vital role in making agriculture profitable by improving productivity through advancing precision farming – producing the required crops at the required times in the required amounts, improving yield and flavor per unit area, reducing input waste through data-driven applications, and realizing sustainable agriculture that is resistant to climate change, among other benefits.

Eagmark’s Vision for the Future of Agri-Tech & Smart Farming

Due to the diminishing farmland in Africa, agricultural production has been dwindling while the continent’s population is on a constant growth. Due to the growing number of challenges in agriculture, most individuals are now moving into other professions and this has resulted in a shortage of labor on farms. For the remaining farmers who are continuing to depend on the industry, there is an urgent need to provide them with assistance to meet these challenges.

Eagmark acts as a catalyst and has embarked on an advocacy mission for farmers and agribusiness owners to adopt smart farming and Agri-Tech innovations and inventions to address the issues in agriculture. Eagmark acknowledges the rising expectations for smart farming and is focused on researching the current global trends as well as working with industry giants to facilitate provision of precision agriculture that utilizes big data to improve the future of smart agriculture which will reduce farmers’ burden and achieve better productivity.

The Anticipated Contribution of 5G to Agri-Tech & Smart Farming

5G provides more advanced features that make it different from other past communications systems. These include ultra-high speeds as it is said to be 100 times faster than its predecessor 4G. Secondly 5G has ultra-low latency meaning that users can remotely control any gadget in real time without any delays or time lag allowing for monitoring and control of multiple agricultural machines and detection of individuals and objects in real time. 5G also allows multiple simultaneous connections between devices and other equipment. This will enable synchronized work by multiple agricultural machines in the field under one dependable remote monitoring and control system.


Pump-price-hike-1.jpg

The increase in price of fuel, including diesel, petrol and kerosene (all components of oil and natural gas) as proposed by Energy and Petroleum Regulatory Authority (EPRA) has triggered jitters among Kenyans and the consequence will likely keep agricultural inputs at higher levels. The new pump prices will retail higher by Ksh.20.18 for super petrol, Ksh.25. for diesel and Ksh.20 for kerosene, respectively. The changes currently being witnessed in the way energy moves will not help our energy prices in the short term, obviously, and this will be compounded by the ongoing tensions between Russia and Ukraine which will add pressure to agricultural input prices.

The new price changes by EPRA come a day after President William Ruto declared that a 50kg fertilizer bag will retail at Ksh.3,500 down from the current Ksh.6,500 beginning the week of 19th September 2022. However, the price of fertilizers like nitrogen, diammonium phosphate (DAP) and potash are typically influenced by energy markets. Fertilizer is very energy intensive and for nitrogen, the main input in natural gas, it will definitely soar. So, if the price of oil goes up and natural gas goes up, that tends to put an upward pressure on fertilizer prices. Despite the new anticipated subsidized fertilizer costs, the new proposed energy prices will most likely keep the cost of fertilizer upward in the long run.

READ: Global Fertilizer Markets Respond to Surging Energy Prices

Since the beginning of 2022, the price of fertilizer has continued to rise with nearly 50% following the previous year’s surge. The soaring prices are driven by a combination of factors, including surging input costs, supply disruptions caused by the market volatility.

The record-high input costs have not only been witnessed in Kenya, but also globally. In places like Europe, the rising natural gas prices has led to widespread production cutbacks in ammonia which is an important input for nitrogen-based fertilizers.  Similarly, the increasing prices of coal, the main feedstock for ammonia production in China production at some point forced fertilizer factories to reduce production, which contributed to the increase in urea prices. The higher prices of ammonia and sulfur resulted to the rise in phosphate fertilizer prices as well.

The situation as it presents itself can however be a double-edged sword for large-scale Kenyan grain farmers because it would likely cause an increase in both input and grain prices.


produce_banner_3000px_crop-scaled.jpg

The Global Food Donation Policy Atlas (GFDPA) reports that each year, approximately 40% of the food produced in Kenya goes to waste amounting to an estimated Ksh.72 billion (USD 654,545,448) a year. At the same time, approximately 36.5% of the population is food insecure. In 2020, Kenya faced the worst locust invasion it has experienced in 70 years, further increasing food insecurity up to 38%.

The Kenyan government has prioritized hunger reduction and food security in its national policy agenda. The Constitution provides that the government must take legislative and policy initiatives to progressively realize the right to food in Kenya. In 2011, Kenya adopted a National Food and Nutrition Security Policy to improve nutrition and the quality of food available to Kenyans. In 2017, Kenya adopted a National Food and Nutrition Security Policy Implementation Framework to implement the National Food and Nutrition Security Policy to ensure that everyone has access to affordable and nutritious food. Further, Kenya instituted Vision 2030 and the Big Four Agenda, which identify food security as a priority. Nonetheless, Kenya is yet to adopt a national law to promote food donation or prevent food loss and waste. Notwithstanding, Kenya holds initiatives to create awareness about food loss and waste and discuss the gaps in policy and implementation that are hindering progress in reducing food loss and waste. In 2017, Kenya hosted the first ever All Africa Post-Harvest Congress. In 2020, the Ministry of Agriculture, Livestock and Fisheries participated in the first International Day of Awareness of Food Loss and Waste. In addition to the government-led responses to food loss and waste, private sector actors including food banks are actively promoting food rescue and donation of surplus food to mitigate hunger and food insecurity.

KENYA FOOD DONATION POLICY HIGHLIGHTS

DATE LABELING: Kenya’s date labeling scheme is set out in the Food, Drugs and Chemical Substances (Food Hygiene) Regulations, 1978, the Specification of Products to Be Marked with Last Date Sale, 1988, the Food, Drugs and Chemical Substances (Food Labelling, Additives and Standards) Regulations and the Labelling of Pre-packaged Foods – General Requirements under the FDCSA. The Labelling of Prepackaged Foods – General Requirements establish a dual date labeling scheme for prepackaged foods, which distinguishes between safety-based and quality-based labels. Specifically, the Labelling of Prepackaged Foods – General Requirements require all pre-packaged foods to feature either a “date of minimum durability” also expressed as “best before” date, or a “use-by” date also expressed as the “recommended last consumption date” or “expiration date,” depending on the type of food product.

ACTION OPPORTUNITY: Despite aligning with the best practice of having standard labels for quality versus safety as provided in the 2018 update to the Codex Alimentarius General Standard for the Labeling of Prepackaged Foods. None of the regulations governing date labeling in Kenya expressly permit past-date donation of food with a quality date. Kenya should amend the Labelling of Pre-packaged Foods – General Requirements under the Food, Drugs and Chemical Substances Act to explicitly permit the donation of food after the quality-based date. In addition, the government could promote education and awareness on the meaning of date labels.

KENYA FOOD DONATION POLICY OPPORTUNITIES

TAX INCENTIVES AND BARRIERS: Kenya’s Income Tax Act (Cap. 470) does not provide any incentives for in-kind donations, such as donations of food. The Income Tax Act only allows corporate and individual donors to claim a deduction for any cash donation of income to a registered qualifying charitable organization. Further, for most commercial transactions, including the sale of food, vendors must incorporate VAT. Kenya’s VAT system provides two categories of exceptions to taxable supplies that directly impact food products, which is exempt and zero-rated supplies. Certain foods in Kenya are exempt or zero-rated, while some food products are both exempt and zero-rated.

ACTION OPPORTUNITY: To ensure businesses (both donors and distributors) receive proper tax incentives and sufficient information to participate in food donation, the Kenyan government should expand Kenya’s Income Tax Act’s income tax deduction to include in-kind donations to food recovery organizations. As an alternative, the government could offer tax credits for food donations made to food recovery organizations and intermediaries. In addition, Kenya should categorize food donation as a zero-rated supply under the Value Added Tax Act and provide a tax deduction for activities associated with the storage, transportation and delivery of donated food. Lastly, the Kenyan government could develop tax guidance for food donors and food recovery organizations clarifying exemptions.

FOOD SAFETY FOR FOOD DONATIONS: In Kenya, food safety laws are mostly contained in the Public Health Act (PHA) and the Food, Drugs, and Chemical Substances Act (FDCSA). While the PHA and FDCSA do not explicitly include food donation in its scope, existing food safety rules are broad in scope and presumably apply to food donations. However, food donations are not explicitly mentioned in law or guidance.

ACTION OPPORTUNITY: Kenya should amend the Food, Drugs and Chemical Substances Act (FDCSA) to feature a donation-specific chapter or draft regulations related to the FDCSA that elaborate on food safety for donations. The Kenyan government could also produce and disseminate clarifying guidance on food safety requirements relevant to donation.

LIABILITY PROTECTION FOR FOOD DONATIONS: Kenya does not provide explicit legal protections for food donors and food recovery organizations. Generally, claims of harm arising from goods, including food may be brought under the Competition Act and the Consumer Protection Act.

Report courtesy of the Global Food Donation Policy Atlas (https://atlas.foodbanking.org/).

Download Full Report HERE.





Email us with any inquiries or questions.


Connect with us on our social networks: