Africas-Widening-Agricultural-Generation-Gap-1200x675.png

December 5, 2022 AGRI ECONOMICSBLOG0

The majority of people in sub-Saharan Africa reside in rural areas, which are also the areas with the lowest levels of human development. Growing agriculture has the dual benefits of reducing poverty in such areas and improving access to food and nutrition security because most rural households are agricultural in nature and the sector makes a significant contribution to the overall economy.

Given that agriculture is responsible for up to almost 70% of domestic employment and 75% of domestic trade on the continent, it makes sense to focus all support on the industry. Because agriculture was a vital sector for socioeconomic growth during Asia’s Green Revolution, widespread rural poverty in Africa offers a chance to do the same and build on that success.

The Bottlenecks

Despite the numerous opportunities for rural livelihood offered by agriculture, many young people, regrettably, find it unappealing and view it as the employment of last resort. This is due to two primary factors. First, many young people think agriculture is not glamorous, lucrative, or has “snub appeal.”

Second, due to a lack of appropriate facilities, institutions, and policies that support agriculture in rural areas, such as financial options and markets. As a result, rural-to-urban migration has increased, poverty has increased, and agriculture has remained undesirable and unattractive to youth. This scenario puts food security at risk and could collapse rural economies that rely mostly on agriculture. As a result, farmers are getting older on average and younger people are less likely to take over for older farmers, creating a “generation gap” in food production.

Because of their negative perception of agriculture, many young people prefer to move to cities and towns in search of white-collar jobs. This is the reason for the generation gap in agriculture. This makes a test for the mechanical headway of farming as more seasoned ages are less acquainted with new developments.

Prospects

Despite these challenges, there is a chance to make agriculture more appealing to the younger generation. Younger generations were born and raised in a technological era where they are surrounded by technologies like smartphones, software programs, and other devices that are used everywhere in the world. Africa presents an expansion opportunity because it has the most uncultivated land in the world. Through mechanization, market access resulting from regional integration, business opportunities, roads, and general rural development, agriculture can be made sustainable in light of a growing population, technological advancements like ICT, and the development of infrastructure.

Recommendation for the future

Making better use of agricultural technologies will make it easier for the next generation to manage agriculture. It will not only inspire the new generation to become involved in agriculture, but it will also assist them in becoming farmers. Furthermore, there is the need to change farming unrefined components into modern items and this will rely progressively upon the limit of African business visionaries to partake and contend in worldwide, provincial, and neighborhood esteem chains.

In order to accomplish this, it will be necessary to support agricultural start-ups with assistance from entrepreneurship development platforms. This will address the market and financial constraints that prevent young people from participating in the agriculture value chain. One methodology toward this path would incorporate business brooding administrations which will uphold youthful agribusiness business visionaries through the arrangement of direction in regions, for example, business arranging, giving research and development framework offices, model turn of events and testing, item approval, business advancement, and working with monetary help through obligation and value. This is in line with the United Nations’ statement that “Africa needs to embrace economic diversification, but also needs to focus on agribusiness to lift the continent out of poverty and put it on the path to prosperity.”

At the policy level, the role of youth in the agricultural development agenda on the continent needs to be emphasized once more. This will serve as the foundation for thinking about how to incorporate gender equality into the agricultural development processes on the continent to get policymakers to be more committed.

Despite organizations like Eagmark’s efforts to correct the imbalance, it is necessary to identify the key success factors and devise strategies for scaling them. Eagmark is actively pursuing means of aligning its implementation by consolidating and forging new programs on youth empowerment in light of the recent rollout of the Science Agenda for Africa Agriculture (S3A), which outlines the guiding principles to help Africa take charge of Science, Technology, and Innovation (STI) to transform its agriculture.


Regenerative-Ag-1200x600.jpeg

October 15, 2022 BLOG0

With the growing global demand for food and nutritional needs, agriculture is fast adopting to the situation in most parts of the world and is entering a transformative era. Although the green revolution has been successful in feeding a rapidly growing human population in the past decades, it has also contributed to depletion of the Earth’s soil and its biodiversity, and has contributed to climate change. The intensive practices are no longer sustainable. The world must move swiftly to transform agriculture through regenerative agricultural practices.

Regenerative agriculture is a food production system that nurtures and restores biodiversity by enhancing soil health, protecting climate and water resources, and improves farms’ productivity and profitability. It combines sustainable agricultural innovations with conventional farming systems focusing on reducing the use of water and other inputs, preventing land degradation and deforestation.

Objective of regenerative agriculture

Most regenerative agricultural practices such as inter-cropping, agroforestry, and integrated livestock farming are mostly associated with indigenous farmers who work with the land rather than against it. These regenerative farming practices mainly focus on producing enough nutritious food for the world’s population, helping with climate change mitigation by sequestering carbon in soil and reducing greenhouse gas emissions, restoration of endangered biodiversity and improving natural habitats, reducing deforestation., and enhancing farmer livelihoods.

1. Least soil disturbance

This principle involves the employing farming practices that minimize soil disturbance which have added benefits to the soil and the climate. The practice involves zero-till or use of reduced-tilling techniques to reduce its vulnerability to wind and water erosion, as well as degeneration of microbiome. Practicing minimum tillage enhances the soil’s ability to retain water, and improves crops performance and resilience during perennial droughts. Regenerative farming in this case involves planting seeds directly into the residue of the previous crop which contains more organic matter making it is less prone to erosion by wind or rainwater.

2. All Year-Round Farming

The practice involves growing of cover crops which provide all year-round plant coverage that prevents soil erosion and increases carbon inputs. Different crops are planted immediately after harvest, often alternating cash crops with cover crops protecting the top soil and increasing its moisture content through root penetration.

3. Diversifying crops in time and space

Practices such as crop rotation and inter-cropping, and agroforestry increases resilience, productivity, and diversity. Planting the same type of crops on the same field routinely degenerates the soil nutrients and encourages pests and weeds infestation. Regenerative agricultural practices such as rotating between nitrogen-fixing crops such as legumes and crops that highly use nitrogen like maize can greatly improve soil fertility.

4. Precision Farming

The application of inputs through data-enabled innovations based on observation, measurement and responding to inter and intra-field variability in crops leads to minimum and optimal amounts of production inputs. Precision agriculture involves use of digital tools such as soil sensors to map out a detailed understanding of soil nutrient content and tailor application of fertilizers and other crop protection products.

5. Mixed Farming

Practicing mixed farming whereby livestock and crops are grown on the same farm can have tremendous improvement on soil health, fertility and structure. The integration of livestock into crop production while using practices such as managed grazing can transform plant material into rich organic matter through manure production which can help prepare the land for the next planting season.

Benefits of Regenerative Agriculture

Regenerative agriculture when widely adopted and practiced has a wide of long-term benefits including:

  • Increased yield & reduced deforestation.
  • Improved biodiversity.
  • Mitigated impact of extreme weather/climate.
  • Enhanced farm profitability.
  • Better nutrition and human health.
  • Enhanced nutrient management, water retention, and less greenhouse gas emissions.
  • Higher yields and increased food security.

What can be done to accelerate adoption and transition to Regenerative Agriculture?

The global population is estimated to reach 9.7 billion by mid-century while at the same time agriculture is currently facing increasing challenges from pests, diseases, effects of climate change and global warming, degraded land, vagaries of weather, among others. While modern farming has tried to feed the current global population of about 7.9 billion, there is still food insecurity and hunger that has plagued most parts of the developing world.

Food security is now a top priority in order to ensure the survival of the human race and to achieve these gains in the shortest time, more investment is needed to accelerate the widespread adoption of regenerative agricultural practices, something that will require heavy involvement of farmers, policymakers, and multinational agricultural companies.


Correcting-the-course-1200x962.png

The 1st and 2nd Sustainable Development Goals (SDG) are to end poverty and hunger by 2030. However, those goals now seem “out of reach,” according to a new World Bank Report that has revealed that the developments to fighting poverty has ground to a halt based on the slow global economic growth.

The slow global economic growth is majorly attributed to COVID-19 which dealt the biggest setback to ending global poverty in recent times and probably in the decades to come. Other contributions to this setback are the global economic shocks that have resulted due to rising food and energy prices as consequences of the climate shocks and conflict between Russia and Ukraine who are among the world’s biggest food producers.

This 2022 report is the first to be released by World Bank since it unveiled the new international poverty index from $1.90 to $2.15. With this, it is estimated that about 600 million individuals will be living below the poverty line and will face extreme poverty by 2030. This is a grim statistic since it is more than twice the number set out in the Sustainable Development Goals.

The projected rise in extreme poverty could lead to unprecedented global hunger, instability, less climate-resilient initiatives, and definitely low food production that will spur less and unsustainable economic growth.

The progress to reduce global poverty levels have staggered since 2014 resulting to even greater challenges in reaching out to populations in low-income economies. The 2022 World Bank Report further analyzes how fiscal policy was used in the first year of the COVID-19 pandemic to support the most vulnerable populations. It also elaborates how taxes, transfers, and subsidies impacted poverty and inequality levels in 94 countries before the pandemic in 2020, revealing and comparing insights of the effects of fiscal policy in normal conditions and during crises.


Soil_microbiome-1200x800.jpg

October 4, 2022 AGRO BIOLOGICALBLOG0

Video Credit: Morehead Planetarium & Science Center

The Competing Needs

In recent times, agricultural productivity has significantly declined due to a number of factors such as environmental degradation, negative effects of climate change and global warming, reduced size of arable land due to the growing population, competing demands for natural resources, soil degradation as a result of harmful human activities, among other factors. Soil is a critical mass that supports all life on earth and without it life on earth will not be feasible.

The Magic of Soil Microorganisms

Soil microbiome play a significant role in creating soil ecological balance and improving plant nutrition and the plants are part of a vibrant ecosystem that comprises numerous and different microbes that thrive in the soil. These microorganisms, including fungi and nitrogen-fixing symbiotic bacteria have been critical in contributing to crop health and yield by improving mineral nutrition to the crops. With the modern day advancements in research and innovations, it has now been discovered that these organisms also have other uses and can play a significant role in replacing synthetic agricultural inputs.

With utmost considering of the challenges that the agricultural sector is facing, advancing research into soil microbiomes could be one of the fundamental solutions that would create a significant impact in increasing agricultural productivity and sustainability in order to feed the growing world population that is expected to reach nearly 10 billion by 2050. Coupled with the global climate crisis, the increasing population has spurred the demand for biofuels which must be produces in adequate quantities without reducing food production.

As it is now, the amount of arable land has reduced due to the soaring population and demand for natural resources. To compound the challenges, the available arable soils have been polluted with harmful chemicals, exhausted with over-cultivation and degraded through erosion. Continued use of fertilizers have also not had shown a great change in improving soil health since a considerable amount of these fertilizer nutrients have been shown to be poorly absorbed by crops. Therefore, advancing research for better understanding of soil microbes remains as part of the core initiatives to effectively improve soil health and efficiently increasing agricultural production minimal disturbance and harm to the ecosystem.

Race Against Time

Time is critical and the race to achieving a sustainable farming is highly dependent on how soon the foundation for deeper soil research will be laid to determine how soil microbiome affect the absorption and uptake of plant nutrients.


5G-Farming-main.jpeg

Video credit: John Deere

From unmanned tractors to robots, drones, gadgets and AI/ML and big data, the agricultural industry is being transformed with the advent of digital revolution and 5G has everything to do with it.

With the current state of global food security and extreme hunger, agricultural sustainability is more critical now than ever and smart farming definitely plays a vital role in food crop production. The amalgamation of 5G, artificial intelligence (AI), machine learning (ML), big data and edge computing provides a powerful element which could forever change smart farming which can lead to agricultural transformation and increased food production.

Agriculture forms the backbone human survival, and yet currently the world is still at the crossroads with increasing food production to meet the global demand given the soaring population that is estimated to reach about 9.7 billion by the mid of the 21st century. With the current technological advancements witnessed globally, it’s dumbfounding that more than two decades into the 21st century farming in most parts of the world still remains largely labor-intensive. Thanks to the penetration of 5G in most parts of the world, farming as it is traditionally known is changing through the automation of the traditional manual labor, marking the advent of modern farming.

Resource Constraints & Challenges in Agriculture

A number of factors have continued to stifle advancement in agriculture to meet the food production needs of the 21st century. The cost of farming and production has been increasing due the high input prices, and increasing cost of other factors of production including labor. The demand for food and other agricultural products is rising while natural resources continue to diminish, and the effects of climate change continue to pummel.  Greenhouse gas emissions are leading to the rise in global temperatures, precipitation patterns are changing, and the infestation of pests, diseases and weeds have continued to reduce crop yields.

The Advent of Smart Farming & Agri-Tech

5G is the next generation of communication systems and is poised to transform agriculture as we know it. Telecommunication carriers are currently on the digital race to rollout high-speed data, 5G-compatible devices and gadgets in their portfolios and within no time 5G will part of our daily lives.

The role of 5G in agriculture cannot be underscored enough as it will increasingly automate the industry which will lead to production of more autonomous agricultural machinery and development of data-driven smart agricultural systems. Conglomerates are now racing against time to develop smart farming systems that can benefit from 5G, AI/ML and edge computing systems. The integration of 5G with other technologies will lead to further advancement of precision farming using customized, data-driven approaches to farm management to replace the traditional cumbersome approaches which lacked the ability to predict future changes in weather and climate patterns, soil nutrient changes and real-time relaying and sharing of data.

The Value of Agri-Tech & Smart Farming

Agri-Tech and Smart Farming play a vital role in making agriculture profitable by improving productivity through advancing precision farming – producing the required crops at the required times in the required amounts, improving yield and flavor per unit area, reducing input waste through data-driven applications, and realizing sustainable agriculture that is resistant to climate change, among other benefits.

Eagmark’s Vision for the Future of Agri-Tech & Smart Farming

Due to the diminishing farmland in Africa, agricultural production has been dwindling while the continent’s population is on a constant growth. Due to the growing number of challenges in agriculture, most individuals are now moving into other professions and this has resulted in a shortage of labor on farms. For the remaining farmers who are continuing to depend on the industry, there is an urgent need to provide them with assistance to meet these challenges.

Eagmark acts as a catalyst and has embarked on an advocacy mission for farmers and agribusiness owners to adopt smart farming and Agri-Tech innovations and inventions to address the issues in agriculture. Eagmark acknowledges the rising expectations for smart farming and is focused on researching the current global trends as well as working with industry giants to facilitate provision of precision agriculture that utilizes big data to improve the future of smart agriculture which will reduce farmers’ burden and achieve better productivity.

The Anticipated Contribution of 5G to Agri-Tech & Smart Farming

5G provides more advanced features that make it different from other past communications systems. These include ultra-high speeds as it is said to be 100 times faster than its predecessor 4G. Secondly 5G has ultra-low latency meaning that users can remotely control any gadget in real time without any delays or time lag allowing for monitoring and control of multiple agricultural machines and detection of individuals and objects in real time. 5G also allows multiple simultaneous connections between devices and other equipment. This will enable synchronized work by multiple agricultural machines in the field under one dependable remote monitoring and control system.


Pump-price-hike-1.jpg

The increase in price of fuel, including diesel, petrol and kerosene (all components of oil and natural gas) as proposed by Energy and Petroleum Regulatory Authority (EPRA) has triggered jitters among Kenyans and the consequence will likely keep agricultural inputs at higher levels. The new pump prices will retail higher by Ksh.20.18 for super petrol, Ksh.25. for diesel and Ksh.20 for kerosene, respectively. The changes currently being witnessed in the way energy moves will not help our energy prices in the short term, obviously, and this will be compounded by the ongoing tensions between Russia and Ukraine which will add pressure to agricultural input prices.

The new price changes by EPRA come a day after President William Ruto declared that a 50kg fertilizer bag will retail at Ksh.3,500 down from the current Ksh.6,500 beginning the week of 19th September 2022. However, the price of fertilizers like nitrogen, diammonium phosphate (DAP) and potash are typically influenced by energy markets. Fertilizer is very energy intensive and for nitrogen, the main input in natural gas, it will definitely soar. So, if the price of oil goes up and natural gas goes up, that tends to put an upward pressure on fertilizer prices. Despite the new anticipated subsidized fertilizer costs, the new proposed energy prices will most likely keep the cost of fertilizer upward in the long run.

READ: Global Fertilizer Markets Respond to Surging Energy Prices

Since the beginning of 2022, the price of fertilizer has continued to rise with nearly 50% following the previous year’s surge. The soaring prices are driven by a combination of factors, including surging input costs, supply disruptions caused by the market volatility.

The record-high input costs have not only been witnessed in Kenya, but also globally. In places like Europe, the rising natural gas prices has led to widespread production cutbacks in ammonia which is an important input for nitrogen-based fertilizers.  Similarly, the increasing prices of coal, the main feedstock for ammonia production in China production at some point forced fertilizer factories to reduce production, which contributed to the increase in urea prices. The higher prices of ammonia and sulfur resulted to the rise in phosphate fertilizer prices as well.

The situation as it presents itself can however be a double-edged sword for large-scale Kenyan grain farmers because it would likely cause an increase in both input and grain prices.


produce_banner_3000px_crop-scaled.jpg

The Global Food Donation Policy Atlas (GFDPA) reports that each year, approximately 40% of the food produced in Kenya goes to waste amounting to an estimated Ksh.72 billion (USD 654,545,448) a year. At the same time, approximately 36.5% of the population is food insecure. In 2020, Kenya faced the worst locust invasion it has experienced in 70 years, further increasing food insecurity up to 38%.

The Kenyan government has prioritized hunger reduction and food security in its national policy agenda. The Constitution provides that the government must take legislative and policy initiatives to progressively realize the right to food in Kenya. In 2011, Kenya adopted a National Food and Nutrition Security Policy to improve nutrition and the quality of food available to Kenyans. In 2017, Kenya adopted a National Food and Nutrition Security Policy Implementation Framework to implement the National Food and Nutrition Security Policy to ensure that everyone has access to affordable and nutritious food. Further, Kenya instituted Vision 2030 and the Big Four Agenda, which identify food security as a priority. Nonetheless, Kenya is yet to adopt a national law to promote food donation or prevent food loss and waste. Notwithstanding, Kenya holds initiatives to create awareness about food loss and waste and discuss the gaps in policy and implementation that are hindering progress in reducing food loss and waste. In 2017, Kenya hosted the first ever All Africa Post-Harvest Congress. In 2020, the Ministry of Agriculture, Livestock and Fisheries participated in the first International Day of Awareness of Food Loss and Waste. In addition to the government-led responses to food loss and waste, private sector actors including food banks are actively promoting food rescue and donation of surplus food to mitigate hunger and food insecurity.

KENYA FOOD DONATION POLICY HIGHLIGHTS

DATE LABELING: Kenya’s date labeling scheme is set out in the Food, Drugs and Chemical Substances (Food Hygiene) Regulations, 1978, the Specification of Products to Be Marked with Last Date Sale, 1988, the Food, Drugs and Chemical Substances (Food Labelling, Additives and Standards) Regulations and the Labelling of Pre-packaged Foods – General Requirements under the FDCSA. The Labelling of Prepackaged Foods – General Requirements establish a dual date labeling scheme for prepackaged foods, which distinguishes between safety-based and quality-based labels. Specifically, the Labelling of Prepackaged Foods – General Requirements require all pre-packaged foods to feature either a “date of minimum durability” also expressed as “best before” date, or a “use-by” date also expressed as the “recommended last consumption date” or “expiration date,” depending on the type of food product.

ACTION OPPORTUNITY: Despite aligning with the best practice of having standard labels for quality versus safety as provided in the 2018 update to the Codex Alimentarius General Standard for the Labeling of Prepackaged Foods. None of the regulations governing date labeling in Kenya expressly permit past-date donation of food with a quality date. Kenya should amend the Labelling of Pre-packaged Foods – General Requirements under the Food, Drugs and Chemical Substances Act to explicitly permit the donation of food after the quality-based date. In addition, the government could promote education and awareness on the meaning of date labels.

KENYA FOOD DONATION POLICY OPPORTUNITIES

TAX INCENTIVES AND BARRIERS: Kenya’s Income Tax Act (Cap. 470) does not provide any incentives for in-kind donations, such as donations of food. The Income Tax Act only allows corporate and individual donors to claim a deduction for any cash donation of income to a registered qualifying charitable organization. Further, for most commercial transactions, including the sale of food, vendors must incorporate VAT. Kenya’s VAT system provides two categories of exceptions to taxable supplies that directly impact food products, which is exempt and zero-rated supplies. Certain foods in Kenya are exempt or zero-rated, while some food products are both exempt and zero-rated.

ACTION OPPORTUNITY: To ensure businesses (both donors and distributors) receive proper tax incentives and sufficient information to participate in food donation, the Kenyan government should expand Kenya’s Income Tax Act’s income tax deduction to include in-kind donations to food recovery organizations. As an alternative, the government could offer tax credits for food donations made to food recovery organizations and intermediaries. In addition, Kenya should categorize food donation as a zero-rated supply under the Value Added Tax Act and provide a tax deduction for activities associated with the storage, transportation and delivery of donated food. Lastly, the Kenyan government could develop tax guidance for food donors and food recovery organizations clarifying exemptions.

FOOD SAFETY FOR FOOD DONATIONS: In Kenya, food safety laws are mostly contained in the Public Health Act (PHA) and the Food, Drugs, and Chemical Substances Act (FDCSA). While the PHA and FDCSA do not explicitly include food donation in its scope, existing food safety rules are broad in scope and presumably apply to food donations. However, food donations are not explicitly mentioned in law or guidance.

ACTION OPPORTUNITY: Kenya should amend the Food, Drugs and Chemical Substances Act (FDCSA) to feature a donation-specific chapter or draft regulations related to the FDCSA that elaborate on food safety for donations. The Kenyan government could also produce and disseminate clarifying guidance on food safety requirements relevant to donation.

LIABILITY PROTECTION FOR FOOD DONATIONS: Kenya does not provide explicit legal protections for food donors and food recovery organizations. Generally, claims of harm arising from goods, including food may be brought under the Competition Act and the Consumer Protection Act.

Report courtesy of the Global Food Donation Policy Atlas (https://atlas.foodbanking.org/).

Download Full Report HERE.





Email us with any inquiries or questions.


Connect with us on our social networks: